【題目】如圖,已知AB是半徑為2的半球O的直徑,P,D為球面上的兩點(diǎn)且∠DAB=∠PAB=60°,
(1)求證:平面PAB⊥平面DAB;
(2)求二面角B﹣AP﹣D的余弦值.

【答案】
(1)證明:在△PAB中,過P作PH⊥AB于點(diǎn)H,連HD.

由Rt△APB≌Rt△ADB可知DH⊥AB,且 ,

又 PH2+HD2=3+3=6=PD2,∴PH⊥HD.

又AB∩HD=H,∴PH⊥平面ABD,又PH平面PAB,

∴平面PAB⊥平面ABD.


(2)解:由(1)可知HB,HD,HP兩兩垂直,

故以H為原點(diǎn),HB,HD,HP所在直線分別為x軸,y軸,z軸,如圖建立空間直角坐標(biāo)系,可知

設(shè)平面APD的法向量為 =(x,y,z),

,即 ,

,

,則得y=z=1,∴ ,

又平面APB的法向量 =(0,1,0),

∴cos = = = ,

而二面角B﹣AP﹣D與m,n的夾角相等,

因此所求的二面角B﹣AP﹣D的余弦值為


【解析】(1)在△PAB中,過P作PH⊥AB于點(diǎn)H,連HD.證明DH⊥AB,PH⊥HD.推出PH⊥平面ABD,然后證明平面PAB⊥平面ABD.(2)由(1)可知HB,HD,HP兩兩垂直,故以H為原點(diǎn),HB,HD,HP所在直線分別為x軸,y軸,z軸,求出相關(guān)點(diǎn)的坐標(biāo)求出平面APD的法向量,平面APB的法向量,利用空間向量的數(shù)量積求解二面角B﹣AP﹣D的余弦值即可.
【考點(diǎn)精析】通過靈活運(yùn)用平面與平面垂直的判定,掌握一個平面過另一個平面的垂線,則這兩個平面垂直即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正實(shí)數(shù)a,b滿足:a+b=2.
(1)求 的最小值m;
(2)設(shè)函數(shù)f(x)=|x﹣t|+|x+ |(t≠0),對于(Ⅰ)中求得的m,是否存在實(shí)數(shù)x,使得f(x)=m成立,若存在,求出x的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)f(x)有最大值M,則M的取值范圍是(
A.( ,0)
B.(0, ]
C.(0, ]
D.( ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 (t為參數(shù))恒過橢圓 (φ為參數(shù))在右焦點(diǎn)F.
(1)求m的值;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn),求|FA||FB|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點(diǎn)P在正方體ABCD﹣A1B1C1D1的對角線BD1上.過點(diǎn)P作垂直于平面BB1D1D的直線,與正方體表面相交于M,N.設(shè)BP=x,MN=y,則函數(shù)y=f(x)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式|x+a|<b的解集為{x|2<x<4}.
(1)求實(shí)數(shù)a,b的值;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=9,且2a1 , a3﹣1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 =2n1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx+x2+(a﹣1)x﹣a,(a∈R),當(dāng)x≥1時,f(x)≥0恒成立.
(1)求實(shí)數(shù)a的取值范圍;
(2)若正實(shí)數(shù)x1、x2(x1≠x2)滿足f(x1)+f(x2)=0,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案