在正方體中,如圖E、F分別是 ,CD的中點,
(1)求證:;
(2)求.

(1)證明見解析;(2).

解析試題分析:(1)利用已知的線面垂直關(guān)系建立空間直角坐標(biāo)系,準(zhǔn)確寫出相關(guān)點的坐標(biāo),從而將幾何證明轉(zhuǎn)化為向量運算.其中靈活建系是解題的關(guān)鍵.(2)證明證線線垂直,只需要證明直線的方向向量垂直;(3)把向量夾角的余弦值轉(zhuǎn)化為兩平面法向量夾角的余弦值;(4)空間向量將空間位置關(guān)系轉(zhuǎn)化為向量運算,應(yīng)用的核心是要充分認(rèn)識形體特征,建立恰當(dāng)?shù)淖鴺?biāo)系,實施幾何問題代數(shù)化.同時注意兩點:一是正確寫出點、向量的坐標(biāo),準(zhǔn)確運算;二是空間位置關(guān)系中判定定理與性質(zhì)定理條件要完備.
試題解析:解:建立如圖所示的直角坐標(biāo)系,(1)不妨設(shè)正方體的棱長為1,

則D(0,0,0),A(1,0,0),(0,0,1),
E(1,1,),F(xiàn)(0,,0),
=(0,,-1),=(1,0,0),   
=(0,1,), 
=0,.
(2)(1,1,1),C(0,1,0),故=(1,0,1),=(-1,-,-),
=-1+0-=-,  
,,    
則cos.
.     
考點:利用空間向量證明線線垂直和求夾角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

內(nèi)接于以為圓心,半徑為1的圓,且,則的面積為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,AB=4,AC=3,M,N分別是AB,AC的中點.
(1)用,表示,;
(2)若∠BAC=60°,求的值;
(3)若BN⊥CM,求cos∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.(1)若的夾角為60o,求;
(2)若=61,求的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量.
(1)若為向量與向量的夾角,求的值;
(2)若向量與向量垂直,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,動點到兩點、的距離之和等于4.設(shè)點的軌跡為
(1)求曲線的方程;
(2)設(shè)直線交于、兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,.
(1)若,,且,求;
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

中,,則__________; 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若正方形ABCD邊長為1,點P在線段AC上運動,則的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊答案