設(shè)l,m是兩條不同的直線,a是一個平面,有下列四個命題:
(1)若l⊥α,m?a,則l⊥m;(2)若l⊥a,l∥m,則m⊥a;
(3)若l∥a,m?a,則l∥m;(4)若ll∥a,m∥a,則l∥m
則其中命題正確的是________.
解:∵l⊥α,m?a,∴l(xiāng)⊥m,故(1)正確;
若l⊥α,l∥m,由線面垂直的第二判定定理,我們可得m⊥α,故(2)正確;
若l∥α,m?α,則l與m可能平行也可能垂直,故(3)錯誤;
若l∥α,m∥α,則l與m可能平行也可能垂直也可能異面,故(4)錯誤;
故答案為:(1),(2).
分析:根據(jù)空間空間中線面關(guān)系的判定及性質(zhì)定理逐個分析四個結(jié)論,由線面垂直的判定定理,我們可得①不滿足定理,故①錯誤;③中若l∥α,m?α,則l與m可能平行也可能垂直,故③錯誤;④中若l∥α,m∥α,則l與m可能平行也可能垂直也可能異面,故④錯誤;分析后即可得到結(jié)論.
點評:判斷或證明線面平行的常用方法有:①利用線面平行的定義(無公共點);②利用線面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性質(zhì)定理(α∥β,a?α?a∥β);④利用面面平行的性質(zhì)(α∥β,a?α,a?,a∥α??a∥β).線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說,根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來.