在棱長為4的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、D1C1上的動點(diǎn),點(diǎn)G為正方形B1BCC1的中心.則空間四邊形AEFG在該正方體各個面上的正投影所構(gòu)成的圖形中,面積的最大值為
12
12
分析:通過作圖,分析出空間四邊形AEFG在該正方體各個面上的正投影所構(gòu)成的圖形的形狀,求出其面積,得到面積的最大值.
解答:解:如圖,

若投影投在AA1D1D或BB1CC1平面上,投影面積由E點(diǎn)確定,最大面積為8,E與A1重合時取最大面積;
若投影投在ABCD或A1B1C1D1平面上,投影面積由F點(diǎn)確定,最大面積為8,F(xiàn)與D1重合時取最大面積;
若投影投在ABA1B1或DD1CC1平面上,投影面積由E點(diǎn)與F點(diǎn)確定,當(dāng)E與A1,F(xiàn)與C1重合時,可得最大面積,G投在BB1的中點(diǎn),是個直角梯形S=
(4+2)×4
2
=12.
故答案為12.
點(diǎn)評:本題考查了棱柱的結(jié)構(gòu)特征,考查了空間幾何圖形在平面上的正投影,考查了學(xué)生觀察問題和分析問題的能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在棱長為4的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn).
(I)求三棱錐D1-ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A-D1E-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為4的正方體ABCD-A′B′C′D′中,E、F分別是AD、A′D′的中點(diǎn),長為2的線段MN的一個端點(diǎn)M在線段EF上運(yùn)動,另一個端點(diǎn)N在底面A′B′C′D′上運(yùn)動,則線段MN的中點(diǎn)P的軌跡(曲面)與二面角A-A′D′-B′所圍成的幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為4的正方體ABCD-A1B1C1D1中,點(diǎn)E、F分別在棱AA1和AB上,且C1E⊥EF,則|AF|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(文)如圖,在棱長為4的正方體ABCDABCD′中,E、F分別是ADAD′的中點(diǎn),長為2的線段MN的一個端點(diǎn)M在線段EF上運(yùn)動,另一個端點(diǎn)N在底面ABCD′?上運(yùn)動,則線段MN的中點(diǎn)P的軌跡(曲面)與二面角AAD′-B′所圍成的幾何體的體積為(  )

A.      B.        C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn)。

 

(I)求三棱錐D1—ACE的體積;

(II)求異面直線D1E與AC所成角的余弦值;

(III)求二面角A—D1E—C的正弦值。

 

查看答案和解析>>

同步練習(xí)冊答案