對(duì)于數(shù)列,定義數(shù)列為的“差數(shù)列”.
(I)若的“差數(shù)列”是一個(gè)公差不為零的等差數(shù)列,試寫出的一個(gè)通項(xiàng)公式;
(II)若的“差數(shù)列”的通項(xiàng)為,求數(shù)列的前n項(xiàng)和;
(III)對(duì)于(II)中的數(shù)列,若數(shù)列滿足且,求:①數(shù)列的通項(xiàng)公式;②當(dāng)數(shù)列前n項(xiàng)的積最大時(shí)n的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年湖南十二校文)(13分)
對(duì)于數(shù)列定義數(shù)列為的“和數(shù)列”
(1)若的“和數(shù)列”的通項(xiàng)為2n+1,,求,并寫出的通項(xiàng)公式。(不必證明)
(2)若的“和數(shù)列”的通項(xiàng)為,數(shù)列滿足,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年西城區(qū)抽樣理)(14分) 對(duì)于數(shù)列,定義數(shù)列為的“差數(shù)列”.
(I)若的“差數(shù)列”是一個(gè)公差不為零的等差數(shù)列,試寫出的一個(gè)通項(xiàng)公式;
(II)若的“差數(shù)列”的通項(xiàng)為,求數(shù)列的前n項(xiàng)和;
(III)對(duì)于(II)中的數(shù)列,若數(shù)列滿足
求:①數(shù)列的通項(xiàng)公式;②當(dāng)數(shù)列前n項(xiàng)的積最大時(shí)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市海淀區(qū)高三第二學(xué)期第二次模擬(理科)數(shù)學(xué)題 題型:解答題
對(duì)于數(shù)列,若滿足,則稱數(shù)列為“0-1數(shù)列”.定義變換,將“0-1數(shù)列”中原有的每個(gè)1都變成0,1,原有的每個(gè)0都變成1,0. 例如:1,0,1,則設(shè)是“0-1數(shù)列”,令
.
(Ⅰ) 若數(shù)列:求數(shù)列;
(Ⅱ) 若數(shù)列共有10項(xiàng),則數(shù)列中連續(xù)兩項(xiàng)相等的數(shù)對(duì)至少有多少對(duì)?請(qǐng)說(shuō)明理由;
(Ⅲ)若為0,1,記數(shù)列中連續(xù)兩項(xiàng)都是0的數(shù)對(duì)個(gè)數(shù)為,.求關(guān)于的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com