【題目】給定一個(gè)n項(xiàng)的實(shí)數(shù)列,任意選取一個(gè)實(shí)數(shù)c,變換T(c)將數(shù)列a1,a2,…,an變換為數(shù)列|a1﹣c|,|a2﹣c|,…,|an﹣c|,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)c可以不相同,第k(k∈N*)次變換記為Tk(ck),其中ck為第k次變換時(shí)選擇的實(shí)數(shù).如果通過k次變換后,數(shù)列中的各項(xiàng)均為0,則稱T1(c1),T2(c2),…,Tk(ck)為“k次歸零變換”.
(1)對(duì)數(shù)列:1,3,5,7,給出一個(gè)“k次歸零變換”,其中k≤4;
(2)證明:對(duì)任意n項(xiàng)數(shù)列,都存在“n次歸零變換”;
(3)對(duì)于數(shù)列1,22,33,…,nn,是否存在“n﹣1次歸零變換”?請(qǐng)說明理由.
【答案】(1)見解析(2)見解析(3)不存在,見解析
【解析】
(1)根據(jù)定義取恰當(dāng)?shù)闹颠M(jìn)行變換得解;
(2)結(jié)合(1)進(jìn)行歸零變換的過程,可以考慮構(gòu)造數(shù)列,經(jīng)過k次變換后,數(shù)列記為,k=1,2,…,進(jìn)行變換Tk(ck)時(shí),,依次變換即可得證;
(3)利用數(shù)學(xué)歸納法證明該數(shù)列不存在“n﹣1次歸零變換”.
(1)方法1:T1(4):3,1,1,3;T2(2):1,1,1,1;T3(1):0,0,0,0.
方法2:T1(2):1,1,3,5;T2(2):1,1,1,3;T3(2):1,1,1,1;T4(1):0,0,0,0..…
(2)經(jīng)過k次變換后,數(shù)列記為,k=1,2,….
取,則,即經(jīng)T1(c1)后,前兩項(xiàng)相等;
取,則,即經(jīng)T2(c2)后,前3項(xiàng)相等;
…
設(shè)進(jìn)行變換Tk(ck)時(shí),其中,變換后數(shù)列變?yōu)?/span>,則;
那么,進(jìn)行第k+1次變換時(shí),取,
則變換后數(shù)列變?yōu)?/span>,
顯然有;
…
經(jīng)過n﹣1次變換后,顯然有;
最后,取,經(jīng)過變換Tn(cn)后,數(shù)列各項(xiàng)均為0.
所以對(duì)任意數(shù)列,都存在“n次歸零變換”.
(3)不存在“n﹣1次歸零變換”.
證明:首先,“歸零變換”過程中,若在其中進(jìn)行某一次變換Tj(cj)時(shí),cj<min{a1,a2,…,an},那么此變換次數(shù)便不是最少.這是因?yàn),這次變換并不是最后的一次變換(因它并未使數(shù)列化為全零),設(shè)先進(jìn)行Tj(cj)后,再進(jìn)行Tj+1(cj+1),由||ai﹣cj|﹣cj+1|=|ai﹣(cj+cj+1)|,即等價(jià)于一次變換Tj(cj+cj+1),同理,進(jìn)行某一步Tj(cj)時(shí),cj>max{a1,a2,…,an};此變換步數(shù)也不是最。
由以上分析可知,如果某一數(shù)列經(jīng)最少的次數(shù)的“歸零變換”,每一步所取的ci滿足min{a1,a2,…,an}≤ci≤max{a1,a2,…,an}.
以下用數(shù)學(xué)歸納法來證明,對(duì)已給數(shù)列,不存在“n﹣1次歸零變換”.
(1)當(dāng)n=2時(shí),對(duì)于1,4,顯然不存在“一次歸零變換”,結(jié)論成立.
(由(2)可知,存在“兩次歸零變換”變換:)
(2)假設(shè)n=k時(shí)成立,即1,22,33,…,kk不存在“k﹣1次歸零變換”.
當(dāng)n=k+1時(shí),假設(shè)1,22,33,…,kk,(k+1)k+1存在“k次歸零變換”.
此時(shí),對(duì)1,22,33,…,kk也顯然是“k次歸零變換”,由歸納假設(shè)以及前面的討論不難知1,22,33,…,kk不存在“k﹣1次歸零變換”,則k是最少的變換次數(shù),每一次變換ci一定滿足,i=1,2,…,k.
因?yàn)?/span>(k+1)k+1﹣kkk>0
所以,(k+1)k+1絕不可能變換為0,與歸納假設(shè)矛盾.
所以,當(dāng)n=k+1時(shí)不存在“k次歸零變換”.
由(1)(2)命題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P為棱長是2的正方體的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)M為的中點(diǎn),若滿足,則動(dòng)點(diǎn)P的軌跡的長度為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線過點(diǎn),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)有兩個(gè)不同的零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于命題的說法錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則x=2”的逆否命題為“若x≠2,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=ax在區(qū)間(﹣∞,+∞)上為增函數(shù)”的充分不必要條件
C.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1≥0”
D.“若f ′()=0,則為y=f(x)的極值點(diǎn)”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點(diǎn),過橢圓的右焦點(diǎn)的直線與橢圓交于,兩點(diǎn)(異于),直線,分別交直線于,兩點(diǎn). 求證:,兩點(diǎn)的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長都為是的中點(diǎn),在邊上,.
(1)證明:平面平面;
(2)若是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面.
①在答題卡中作出點(diǎn)的軌跡,并說明軌跡的形狀(不需要說明理由);
②求二面角的余弦值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實(shí)數(shù)a,若不能,請(qǐng)說明理由;
(Ⅱ)求最大的整數(shù),使得對(duì)任意,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)min{m,n}表示m,n二者中較小的一個(gè),已知函數(shù)f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為
A.-4B.-3C.-2D.0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com