【題目】南方智運汽車公司在我市推出了共享汽車“Warmcar”,有一款車型為眾泰云新能源共享汽車,其中一種租用方式分時計費規(guī)則為:0.15/分鐘+0.8/公里.已知小李家離上班地點為10公里,每天租用該款汽車上、下班各一次,由于堵車、及紅綠燈等原因每次路上開車花費的時間(分鐘)是一個隨機變量,現(xiàn)統(tǒng)計了100次路上開車花費時間,在各時間段內是頻數(shù)分布情況如下表所示:

時間(分鐘)

頻數(shù)

2

6

14

36

28

10

4

(1)寫出小李上班一次租車費用(元)與用車時間(分鐘)的函數(shù)關系;

(2)根據(jù)上面表格估計小李平均每次租車費用;

(3)“眾泰云新能源汽車還有一種租用方式為按月計費,規(guī)則為每個月收取租金2350元,若小李每個月上班時間平均按21天計算,在不計電費和情況下,請你為小李選擇一種省錢的租車方式

【答案】(1) (元)(2)(3) 分時計費

【解析】

(1)根據(jù)題意,上班一次租車費包括路程費用和時間費用兩部分,從而寫出函數(shù)關系;

(2)利用加權平均數(shù)計算平均每次租車時間,代入(1)中的解析式,即可求出答案;

(3)根據(jù)租車次數(shù)和每次的平均費用計算“分時計費”的月費用,與“按月計費”比較,即可確定租車方案.

(1) (元)

(2) 平均每次用車時間為:(分鐘)

平均一次租車費用(元)

(3) 租用方式為分時計費一個月總費用為

因為<

所以,對小李租車僅用于上下班的情況,采用分時計費更省錢.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修44:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為(其中t為參數(shù)),在以原點O為極點,以軸為極軸的極坐標系中,曲線C的極坐標方程為

1)求直線的普通方程及曲線的直角坐標方程;

2)設是曲線上的一動點, 的中點為,求點到直線的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不相等的非零向量,,兩組向量,,,,,均由23排列而成,記,表示S所有可能取值中的最小值,則下列命題中真命題的序號是________.(寫出所有真命題的序號)

S5個不同的值;②若,則無關;③若,則無關;

④若,則;⑤若,,則的夾角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,,且對任意n恒成立.

(1)求證:(n);

(2)求證:(n).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ADEF與梯形ABCD所在平面互相垂直,,,點M是EC的中點.

(1)求證:平面ADEF平面BDE.

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年320日是國際幸福日,某電視臺隨機調查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18,用“10分制”記錄了他們的幸福度指數(shù),結果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5,則稱該人的幸福度為“很幸福”.

()求從這18人中隨機選取3,至少有1人是“很幸!钡母怕;

()以這18人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3,表示抽到“很幸!钡娜藬(shù),的分布列及

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班級有50名學生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數(shù)學測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93.下列說法一定正確的是( )

A. 這種抽樣方法是一種分層抽樣

B. 這種抽樣方法是一種系統(tǒng)抽樣

C. 這五名男生成績的方差大于這五名女生成績的方差

D. 該班級男生成績的平均數(shù)小于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,直線,圓.

1)求的取值范圍,并求出圓心坐標;

2)有一動圓的半徑為,圓心在上,若動圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的上焦點為圓心,橢圓的短半軸為半徑的圓與直線截得的弦長為.

(1)求橢圓的方程;

(2)過橢圓左頂點做兩條互相垂直的直線,且分別交橢圓于,兩點(,不是橢圓的頂點),探究直線是否過定點,若過定點則求出定點坐標,否則說明理由.

查看答案和解析>>

同步練習冊答案