【題目】在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線C交于兩點(diǎn).
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)求.
【答案】(1)直線l的方程為y=x+1,曲線C的方程為1;(2).
【解析】
(Ⅰ)消去參數(shù),即可求得直線的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到曲線的直角坐標(biāo)方程;
(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線參數(shù)方程中參數(shù)的幾何意義,即可求解.
(Ⅰ)由直線的參數(shù)方程為,消去參數(shù),可得直線的方程為,由曲線的極坐標(biāo)方程,根據(jù),曲線的方程為.
(Ⅱ)將(參數(shù)),代入1,得,
設(shè)所對應(yīng)的參數(shù)分別為,則,
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2,數(shù)列{an}滿足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明數(shù)列{}為等差數(shù)列;
(3)設(shè)數(shù)列{cn}的通項(xiàng)公式為:Cn=,其前n項(xiàng)和為Tn,求T2n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形ABCD中,AD=1,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖②所示的幾何體.
(1)求證:AB⊥平面ADC;
(2)若AC與平面ABD所成角的正切值為,求二面角B—AD—E的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別為橢圓:的左右焦點(diǎn),已知橢圓上的點(diǎn)到焦點(diǎn),的距離之和為4.
(1)求橢圓的方程;
(2)過點(diǎn)作直線交橢圓于,兩點(diǎn),線段的中點(diǎn)為,連結(jié)并延長交橢圓于點(diǎn)(為坐標(biāo)原點(diǎn)),若,,等比數(shù)列,求線段的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方形中, , 是中點(diǎn)(圖1).將△沿折起,使得(圖2)在圖2中:
(1)求證:平面 平面;
(2)在線段上是否存點(diǎn),使得二面角為大小為,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);.
(1)判斷在上的單調(diào)性,并說明理由;
(2)求的極值;
(3)當(dāng)時,,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形, 平面,且是的中點(diǎn).
(1)求證: 平面;
(2)求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由曲線和曲線組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).
(1)若,求曲線的方程;
(2)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;
(3)對于(1)中的曲線,若直線過點(diǎn)交曲線于點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)直線與線段相交,其中,,則的取值范圍是;
(2)點(diǎn)關(guān)于直線的對稱點(diǎn)為,則的坐標(biāo)為;
(3)圓上恰有個點(diǎn)到直線的距離為;
(4)直線與拋物線交于,兩點(diǎn),則以為直徑的圓恰好與直線相切.
其中正確的命題有_________.(把所有正確的命題的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com