(2013•嘉定區(qū)二模)(理)設(shè)函數(shù)f(x)=
1-x2
,x∈[-1,0)
1-x,x∈[0,1]
,則將y=f(x)的曲線繞x軸旋轉(zhuǎn)一周所得幾何體的體積為
π
π
分析:根據(jù)題意,這旋轉(zhuǎn)一周所得旋轉(zhuǎn)體是由一個半球與一個圓錐組成,求出半球的體積與圓錐的體積即可得到結(jié)果.
解答:解:由題意可知函數(shù)f(x)=
1-x2
,x∈[-1,0)
1-x,x∈[0,1]
,則將y=f(x)的曲線繞x軸旋轉(zhuǎn)一周所得幾何體
是由一個半球與一個圓錐組成,球的半徑為:1,圓錐的底面半徑為1,高為1,
所以所求幾何體的體積為:
1
2
×
4
3
π×13+
1
3
×12π×1
=π.
故答案為:π
點評:本題考查旋轉(zhuǎn)體的體積的求法,判斷幾何體的性質(zhì)是解題的關(guān)鍵,注意準確利用公式進行計算.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)函數(shù)f(x)=ax-(k-1)a-x(a>0且≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)設(shè)定義域為R的函數(shù)f(x)=
1
|x-1|
,x≠1
1,x=1
,若關(guān)于x的方程f2(x)+bf(x)+c=0有3個不同的整數(shù)解x1,x2,x3,則x12+x22+x32等于
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+
x2+b
)
在區(qū)間(-∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga|x|-b|的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)若關(guān)于x的不等式2x2-3x+a<0的解集為(m,1),且實數(shù)f(1)<0,則m=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)(文)已知集合A={-1,0,a},B={x|1<3x<9,x∈Z},若A∩B≠∅,則實數(shù)a的值是
1
1

查看答案和解析>>

同步練習冊答案