【題目】不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則不等式a(x2+1)+b(x﹣1)+c>2ax的解集為(
A.{x|0<x<3}
B.{x|x<0或x>3}
C.{x|﹣2<x<1}
D.{x|x<﹣2或x>1}

【答案】A
【解析】解:因?yàn)椴坏仁絘x2+bx+c>0的解集為{x|﹣1<x<2},所以﹣1和2是方程ax2+bx+c=0的兩根且a<0, 所以 ,
由a(x2+1)+b(x﹣1)+c>2ax,得:ax2﹣(2a﹣b)x+a﹣b+c>0,
設(shè)ax2﹣(2a﹣b)x+a﹣b+c=0的兩根為x3 , x4 , 則 ①,
②,聯(lián)立①②得:x3=0,x4=3,
因?yàn)閍<0,所以ax2﹣(2a﹣b)x+a﹣b+c>0的解集為{x|0<x<3},
所以不等式a(x2+1)+b(x﹣1)+c>2ax的解集為{x|0<x<3}.
故選A.
根據(jù)題目給出的二次不等式的解集,結(jié)合三個(gè)二次的關(guān)系得到a<0,且有 ,然后把要求解的不等式整理為二次不等式的一般形式,設(shè)出該不等式對(duì)應(yīng)的二次方程的兩根,借助于根與系數(shù)的關(guān)系求出兩個(gè)根,再結(jié)合三個(gè)二次的關(guān)系可求得要求解的不等式的解集.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中a為非零實(shí)數(shù)),且方程 有且僅有一個(gè)實(shí)數(shù)根. (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來每件售價(jià)為25元,年銷售8萬件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到x元.公司擬投入 萬作為技改費(fèi)用,投入(50+2x)萬元作為宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an} 中,已知公差 ,且a1+a3+a5+…+a99=60,則a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時(shí),均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為( )

A. 120 B. 121 C. 112 D. 113

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;

當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;

直線AB與a所稱角的最小值為45°;

直線AB與a所稱角的最小值為60°;

其中正確的是________。(填寫所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a4=7,a10=19,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式an及Sn;
(2)若等比數(shù)列{bn}的前n項(xiàng)和為Tn , 且b1=2,b4=S4 , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)給定三個(gè)向量 =(3,2), =(﹣1,2), =(4,1).回答下列問題:
(1)若( +k )∥(2 ),求實(shí)數(shù)k;
(2)設(shè) =(x,y)滿足( )∥( + )且| |=1,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+b與圓x2+y2﹣2x+4y﹣4=0相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若 =0,則實(shí)數(shù)b的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案