11.如果直線y=ax+2與直線y=3x-b關(guān)于直線y=x對(duì)稱,那么a+b=$\frac{19}{3}$.

分析 由直線y=ax+2,解得(a≠0)x=$\frac{y-2}{a}$,把x與y互換可得:y=$\frac{1}{a}x-\frac{2}{a}$.根據(jù)直線y=ax+2與直線y=3x-b關(guān)于直線y=x對(duì)稱,可得3=$\frac{1}{a}$,-$\frac{2}{a}$=-b,解得a,b.

解答 解:由直線y=ax+2,解得(a≠0)x=$\frac{y-2}{a}$,把x與y互換可得:y=$\frac{1}{a}x-\frac{2}{a}$.
∵直線y=ax+2與直線y=3x-b關(guān)于直線y=x對(duì)稱,
∴3=$\frac{1}{a}$,-$\frac{2}{a}$=-b,解得a=$\frac{1}{3}$,b=6.
∴a+b=$\frac{19}{3}$.
故答案為:$\frac{19}{3}$.

點(diǎn)評(píng) 本題考查了直線方程、對(duì)稱性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一盒中有12個(gè)乒乓球,其中9個(gè)新的,3個(gè)舊的(至少使用過(guò)一次),從盒中任取3個(gè)球來(lái)用,用完后裝回盒中,此時(shí)盒中舊球個(gè)數(shù)X是一個(gè)隨機(jī)變量,其分布列為P(x),則P(X=4)=$\frac{27}{220}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在梯形ABCD中,$\overrightarrow{AB}+3\overrightarrow{CD}=\overrightarrow 0$,則$\overrightarrow{BC}$等于( 。
A.$-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$B.$-\frac{2}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AD}$C.$\frac{2}{3}\overrightarrow{AB}-\overrightarrow{AD}$D.$-\frac{2}{3}\overrightarrow{AB}+\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)寫(xiě)出余弦定理.
(2)證明余弦定理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.首項(xiàng)為-12的等差數(shù)列,從第10項(xiàng)起開(kāi)始為正數(shù),則公差d的取值范圍是( 。
A.d>$\frac{8}{3}$B.d<3C.$\frac{8}{3}$≤d<3D.$\frac{4}{3}$<d≤$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2).若P(0<ξ≤1)=0.4,則P(ξ≥2)=( 。
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)的圖象是如圖所示的折線段OAB,點(diǎn)A坐標(biāo)為(1,2),點(diǎn)B坐標(biāo)為(3,0),
定義函數(shù)g(x)=f(x)•(x-1),則函數(shù)g(x)最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在等差數(shù)列{an}中,a10=30,a20=50.
(1)求數(shù)列{an}的通項(xiàng)an
(2)令 bn=2${\;}^{{a}_{n}-10}$,證明數(shù)列{bn}為等比數(shù)列;
(3)求數(shù)列{(2n-1)bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知三棱錐P-A BC四個(gè)頂點(diǎn)都在半徑為2的球面上,PA⊥面ABC,PA=2,底面ABC是正三角形,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是( 。
A.$\frac{7π}{4}$B.C.$\frac{9π}{4}$D.

查看答案和解析>>

同步練習(xí)冊(cè)答案