F1,F(xiàn)2是雙曲線的左、右焦點,過左焦點F1的直線與雙曲線C的左、右兩支分別交于A,B兩點,若,則雙曲線的離心率是(   )
A.B.C.2D.
A

試題分析:,令,,,
,由雙曲線的定義,,
,,,,即
由勾股定理知,,求得(負值舍去),故.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點,平行于的直線在y軸的截距為,且交橢圓與兩點,

(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個等腰三角形,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點是橢圓上一點,分別為的左右焦點,的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標方程為
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線(p>0)的焦點F恰好是雙曲線的右焦點,且兩條曲線的交點的連線過F,則該雙曲線的離心率為(     )  
A.B.2C.+1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線,的左焦點作圓: 的兩條切線,切點為,,雙曲線左頂點為,若,則雙曲線的漸近線方程為       (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

記橢圓圍成的區(qū)域(含邊界)為Ωn(n=1,2,…),當點(x,y)分別在Ω1,Ω2,…上時,x+y的最大值分別是M1,M2,…,則Mn=( 。
A.0B.C.2D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線的左、右焦點分別為,左、右頂點分別為,過焦點軸垂直的直線和雙曲線的一個交點為,若的等差中項,則該雙曲線的離心率為              .

查看答案和解析>>

同步練習冊答案