已知數(shù)列{an}中,a1=1,an=2an-1+3,則此數(shù)列的一個(gè)通項(xiàng)公式是
2n+1-3
2n+1-3
分析:由a1=1,an=2an-1+3,可得an+3=2(an-1+3)(n≥2),從而得{an+3}是公比為2,首項(xiàng)為4的等比數(shù)列.
解答:解:∵數(shù)列{an}中,a1=1,an=2an-1+3,
∴an+3=2(an-1+3)(n≥2),
∴{an+3}是公比為2,首項(xiàng)為4的等比數(shù)列,
∴an+3=4•2n-1,
∴an=2n+1-3.
故答案為:2n+1-3.
點(diǎn)評(píng):本題考查等比關(guān)系的確定,關(guān)鍵在于掌握an+1+m=p(an+m)型問(wèn)題的轉(zhuǎn)化與應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案