【題目】如圖,圓, 是圓M內(nèi)一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線段PN的垂直平分線l和半徑MP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動時(shí),點(diǎn)Q的軌跡為曲線E
(1)求曲線E的方程;
(2)過點(diǎn)D(0,3)作直線m與曲線E交于A,B兩點(diǎn),點(diǎn)C滿足 (O為原點(diǎn)),求四邊形OACB面積的最大值,并求此時(shí)直線m的方程;
(3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點(diǎn)F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.
【答案】(1)(2)2,(3)存在,x+8y﹣8=0或x=0
【解析】
(1)由已知可得|QN|=|QP|,進(jìn)而有|QM|+|QP|=4>|MN|,根據(jù)橢圓定義,即可求解;
(2)由,四邊形OACB為平行四邊形,設(shè),,設(shè)直線斜率為(斜率不存在另討論),求出直線方程,與橢圓方程聯(lián)立,消元,求出的范圍,根據(jù)韋達(dá)定理得出,關(guān)系,進(jìn)而將表示是為的目標(biāo)函數(shù),換元,利用基本不等式,即可求解;
(3)若直線斜率不存在,滿足條件,若斜率存在,設(shè)直線與曲線E的交點(diǎn)坐標(biāo)為,應(yīng)用點(diǎn)差法,結(jié)合G,H的中點(diǎn)F落在直線y=2x上,求出直線的斜率,設(shè)直線方程,與拋物線方程聯(lián)立,利用,求出直線方程,驗(yàn)證直線與橢圓是否相交,即可求解.
(1)由題意可知,Q在PN的垂直平分線上,所以|QN|=|QP|,
又因?yàn)?/span>|QM|+|QP|=r=4,所以|QM|+|QP|=4>|MN|,
所以Q點(diǎn)的軌跡為橢圓,且2a=4即a=2,
由題意可知c=,所以b=1,
∴曲線E的方程為
(2)因?yàn)?/span>,所以四邊形OACB為平行四邊形,
當(dāng)直線m的斜率不存在時(shí),顯然不符合題意;
當(dāng)直線m的斜率存在時(shí),設(shè)直線 的方程為y=kx+3,
直線m與曲線E交于A(x1,y1),B(x2,y2)兩點(diǎn),
聯(lián)立方程組,消去y,
整理得(1+4k2)x2+24kx+32=0.由△=(24k)2﹣128(1+4k2)>0
得k2>2. x1+x2=﹣,x1x2=,
因?yàn)?/span>S△OAB=|OD||x1﹣x2|=|x1﹣x2|,
所以SOACB=2S△OAB=3|x1﹣x2|=3
=3=24,
令k2﹣2=t,則k2=t+2(由上式知t>0),
所以SOANB=24=24≤24=2,
當(dāng)且僅當(dāng)t=,即k2=時(shí)取等號,∴當(dāng)k=±時(shí),
平行四邊形OACB的面積的最大值為2.此時(shí)直線的方程為y=±x+3
(3)若直線斜率存在,設(shè)直線與曲線E的交點(diǎn)坐標(biāo)為,
滿足曲線E的方程,兩式作差可得,
G,H的中點(diǎn)F落在直線y=2x上,
則有代入可得,
直線方程可以設(shè)為與拋物線方程聯(lián)立,
得,消元可得方程,
直線與拋物線相切則有,所以,
則直線的方程為x+8y﹣8=0,與橢圓方程聯(lián)立:,
消元可得方程17y2﹣32y+15=0,△=322﹣4×17×15>0,
所以直線x+8y﹣8=0滿足題意.
若直線斜率不存在時(shí),直線x=0滿足題意.
所以,綜上這樣的直線存在,方程是x+8y﹣8=0或x=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠包裝白糖的生產(chǎn)線,正常情況下生產(chǎn)出來的白糖質(zhì)量服從正態(tài)分布(單位:).
(Ⅰ)求正常情況下,任意抽取一包白糖,質(zhì)量小于的概率約為多少?
(Ⅱ)該生產(chǎn)線上的檢測員某天隨機(jī)抽取了兩包白糖,稱得其質(zhì)量均小于,檢測員根據(jù)抽檢結(jié)果,判斷出該生產(chǎn)線出現(xiàn)異常,要求立即停產(chǎn)檢修,檢測員的判斷是否合理?請說明理巾.
附:,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長為4的等邊三角形,,是的中點(diǎn).
(1)求證:;
(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在曲線x2+y2=1上運(yùn)動,過點(diǎn)P作x軸的垂線,垂足為Q,動點(diǎn)M滿足.
(1)求動點(diǎn)M的軌跡方程;
(2)點(diǎn)AB在直線x﹣y﹣4=0上,且AB=4,求△MAB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,若為拋物線上第一象限的一動點(diǎn),過作的垂線交準(zhǔn)線于點(diǎn),交拋物線于兩點(diǎn).
(Ⅰ)求證:直線與拋物線相切;
(Ⅱ)若點(diǎn)滿足,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯(cuò)誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且離心率為.
(1)設(shè)過點(diǎn)的直線與橢圓相交于、兩點(diǎn),若的中點(diǎn)恰好為點(diǎn),求該直線的方程;
(2)過右焦點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com