(2014·天門模擬)設(shè)P和Q是兩個(gè)集合,定義集合P+Q={x|x∈P或x∈Q且x∉P∩Q}.若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )

A.[-1,4]

B.(-∞,-1]∪[4,+∞)

C.(-3,5)

D.(-∞,-3)∪[-1,4]∪(5,+∞)

 

D

【解析】由題意可知P={x|-1≤x≤4},Q={x|x<-3或x>5}.所以P+Q={x|x<-3或-1≤x≤4或x>5}.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

命題p:{2}∈{1,2,3},q:{2}⊆{1,2,3},下述判斷:①p或q為真;②p或q為假;③p且q為真;④p且q為假;⑤非p為真;⑥非q為假.其中正確的個(gè)數(shù)為 (  )

A.2 B.3 C.4 D.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:選擇題

(2014·濱州模擬)在區(qū)域內(nèi)任取一點(diǎn)P,則點(diǎn)P落在單位圓x2+y2=1內(nèi)的概率為(  )

A.  B. C.   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第六章 不等式、推理與證明(解析版) 題型:填空題

(2014·孝感模擬)已知實(shí)數(shù)x,y滿足若z=x2+y2,則z的最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第六章 不等式、推理與證明(解析版) 題型:選擇題

條件p:<2x<16,條件q:(x+2)(x+a)<0,若p是q的充分而不必要條件,則a的取值范圍是(  )

A.(4,+∞) B.[-4,+∞)

C.(-∞,-4] D.(-∞,-4)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第八章 平面解析幾何(解析版) 題型:解答題

在直角坐標(biāo)平面上給定一曲線y2=2x,

(1)設(shè)點(diǎn)A的坐標(biāo)為,求曲線上距點(diǎn)A最近的點(diǎn)P的坐標(biāo)及相應(yīng)的距離|PA|.

(2)設(shè)點(diǎn)A的坐標(biāo)為(a,0),a∈R,求曲線上的點(diǎn)到點(diǎn)A距離的最小值dmin,并寫出dmin=f(a)的函數(shù)表達(dá)式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第八章 平面解析幾何(解析版) 題型:填空題

(2013·天津高考)已知拋物線y2=8x的準(zhǔn)線過雙曲線-=1(a>0,b>0)的一個(gè)焦點(diǎn),且雙曲線的離心率為2,則該雙曲線的方程為____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第五章 數(shù)列(解析版) 題型:填空題

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*,若數(shù)列{an}是等比數(shù)列,則實(shí)數(shù)t=______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:解答題

(2014·長春模擬)對(duì)甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如下表:

27

38

30

37

35

31

33

29

38

34

28

36

 

(1)畫出莖葉圖.

(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、方差,并判斷選誰參加比賽更合適?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案