已知△ABC的周長為6,數(shù)學公式成等比數(shù)列,求
(I)試求∠B的取值范圍;  
(Ⅱ)求數(shù)學公式的取值范圍.

解:(1)設依次為a,b,c
則a+b+c=6,b2=ac,
由余弦定理得cosB=
=
=
故有0,…(6分)
(2)又b== 從而0<b≤2
所以 =accosB=
=
=
=-(b+3)2+27 …(10分)
∵0<b≤2∴2…(12分)
分析:(1)設出三邊長,利用△ABC的周長為6,成等比數(shù)列,以及余弦定理,求出∠B的取值范圍.
(2)利用等比數(shù)列,求出b的范圍,通過向量的數(shù)量積,化簡為b的表達式,求出數(shù)量積的范圍即可.
點評:本題考查余弦定理,向量的數(shù)量積的應用,考查計算能力,轉化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,三角A,B,C所對的邊分別為a,b,c.已知△ABC的周長為
2
+1
,且sinA+sinB=
2
sinC

(Ⅰ)求邊c的長;
(Ⅱ)若△ABC的面積為
1
6
sinC
,求角C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的周長為6,三邊長BC,CA,AB構成等差數(shù)列,則
BA
BC
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的周長為6,且
3
cos
A+B
2
=sinC

(1)求角C;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的周長為6,|
BC
|,|
CA
|,|
AB
|
依次為a,b,c,成等比數(shù)列.
(1)求證:0<B≤
π
3

(2)求△ABC的面積S的最大值;
(3)求
BA
BC
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的周長為18,若sinA:sinB:sinC=2:3:4,則此三角形中最大邊的長為
8
8

查看答案和解析>>

同步練習冊答案