已知函數(shù),,().

(1)求函數(shù)的極值;

(2)已知,函數(shù), ,判斷并證明的單調(diào)性;

(3)設(shè),試比較,并加以證明.

 

【答案】

(1)有極小值,無(wú)極大值.(2)上是增函數(shù).

(3). 

【解析】

試題分析:(1),令,得

當(dāng)時(shí),,是減函數(shù);

當(dāng)時(shí),,是增函數(shù).

∴當(dāng)時(shí),有極小值無(wú)極大值.      4分

(2)

==,

由(1)知上是增函數(shù),

當(dāng)時(shí),,

,

,即上是增函數(shù).      10分

(3),由(2)知,上是增函數(shù),

,

得,.      16分

考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時(shí)有極大值6,在x=1時(shí)有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
,
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個(gè)最低點(diǎn)(
11π
6
,-1)

(Ⅰ)如果x=0時(shí),y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的
3
π
,然后將所得圖象向左平移一個(gè)單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個(gè)公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步練習(xí)冊(cè)答案