在數(shù)列{an}和{bn}中,bn是an和an+1的等差中項,a1=2且對任意n∈N*都有3an+1-an=0,則{bn}的通項bn=   
【答案】分析:通過3an+1-an=0判斷數(shù)列是等比數(shù)列,求出通項,然后利用bn是an和an+1的等差中項,求出bn
解答:解:因為
∴{an}是公比為的等比數(shù)列


故答案為:
點評:本題是基礎題,考查等比數(shù)列的判斷通項公式的求法,等差中項的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列{an}和{bn}中,數(shù)學公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當數(shù)學公式時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年北京市清華附中高三統(tǒng)練數(shù)學試卷6(理科)(解析版) 題型:解答題

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案