【題目】已知橢圓,為橢圓的左、右焦點(diǎn),點(diǎn)在直線上且不在軸上,直線與橢圓的交點(diǎn)分別為和,為坐標(biāo)原點(diǎn).
設(shè)直線的斜率為,證明:
問(wèn)直線上是否存在點(diǎn),使得直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)證明見解析;(2).
【解析】
(1)設(shè)出P的坐標(biāo),表示出斜率,化簡(jiǎn)可得結(jié)論;
(2)設(shè)出直線的方程與橢圓方程聯(lián)立,求出斜率,利用kOA+kOB+kOC+kOD=0,即可得到結(jié)論.
因?yàn)闄E圓方程為,所以F1(﹣1,0)、F2(1,0)
設(shè)P(x0,2﹣x0),則,,
所以
(2)記A、B、C、D坐標(biāo)分別為(x1,y1)、(x1,y1)、(x1,y1)、(x1,y1).
設(shè)直線PF1:x=m1y﹣1,PF2:x=m2y+1
聯(lián)立可得
,
代入,可得
同理,聯(lián)立PF2和橢圓方程,可得
由及m1﹣3m2=2(由(1)得)可解得,或,
所以直線方程為或,
所以點(diǎn)P的坐標(biāo)為(0,2)或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的兩個(gè)焦點(diǎn),,設(shè),分別是橢圓的上、下頂點(diǎn),且四邊形的面積為,其內(nèi)切圓周長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),,為橢圓上的動(dòng)點(diǎn),且,試問(wèn):直線是否恒過(guò)一定點(diǎn)?若是,求出此定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c, 且, 若.
(1)求角B的大;
(2)若, 且△ABC的面積為, 求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的兩個(gè)焦點(diǎn),,設(shè),分別是橢圓的上、下頂點(diǎn),且四邊形的面積為,其內(nèi)切圓周長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),,為橢圓上的動(dòng)點(diǎn),且,試問(wèn):直線是否恒過(guò)一定點(diǎn)?若是,求出此定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生的視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,并得到如下直方圖:
年級(jí)名次/是否近視 | 1-50 | 951-1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以下的人數(shù);
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如上述表格中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)0.05的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系;
(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com