【題目】選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求的最小值及取得最小值時的取值范圍;
(Ⅱ)若集合,求實數(shù)的取值范圍.
【答案】(1)3(2)
【解析】試題分析: (Ⅰ)利用絕對值三角不等式,求得的最小值,以及取得最小值時x的取值范圍; (Ⅱ)當集合,函數(shù)恒成立,即的圖象恒位于直線的上方,數(shù)形結(jié)合求得a的取值范圍.
試題解析:解:(Ⅰ)∵ 函數(shù),
當且僅當,即時
函數(shù)的最小值為.
(Ⅱ)函數(shù)
而函數(shù)表示過點,斜率為的一條直線,
如圖所示:當直線過點時, ,∴,
當直線過點時, ,∴,
故當集合,函數(shù)恒成立,
即的圖象恒位于直線的上方,
數(shù)形結(jié)合可得要求的的范圍為.
點睛: 兩數(shù)和差的絕對值的性質(zhì): ,特別注意此式,它是和差的絕對值與絕對值的和差性質(zhì),應(yīng)用此式來求某些函數(shù)的最值時一定要注意等號成立的條件.恒成立問題的解決方法:(1)f(x)<m恒成立,須有[f(x)]max<m;(2)f(x)>m恒成立,須有[f(x)]min>m;(3)不等式的解集為R,即不等式恒成立;(4)不等式的解集為,即不等式無解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,分別是的中點將分別沿折起,使重合于點.則下列結(jié)論正確的是( )
A.
B. 平面
C. 二面角的余弦值為
D. 點在平面上的投影是的外心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)一種溶液,按市場要求,雜質(zhì)含量不能超過0.1%,若初始溶液含雜質(zhì)2%,每過濾一次可使雜質(zhì)含量減少.
(1)寫出雜質(zhì)含量y與過濾次數(shù)n的函數(shù)關(guān)系式;
(2)過濾7次后的雜質(zhì)含量是多少?過濾8次后的雜質(zhì)含量是多少?至少應(yīng)過濾幾次才能使產(chǎn)品達到市場要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間幾何體中,與均為邊長為2的等邊三角形,為腰長為3的等腰三角形,平面平面,平面平面分別為的中點.
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學(xué)生中,隨機抽取40名學(xué)生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數(shù)與眾數(shù);
(2)若從競賽成績在與兩個分數(shù)段的學(xué)生中隨機選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
(3)為了激勵同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評出一二三等獎,得分在內(nèi)的為一等獎,得分在內(nèi)的為二等獎, 得分在內(nèi)的為三等獎.若將頻率視為概率,現(xiàn)從考生中隨機抽取三名,設(shè)為獲得三等獎的人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程與直線的直角坐標方程;
(2)在曲線上取兩點,與原點構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的值域為,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com