精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2+2x+1,如果使f(x)≤kx對任意實數x∈(1,m]都成立的m的最大值是5,則實數k=________.


分析:若f(x)≤kx對任意實數x∈(1,m]都成立,即x2+(2-k)x+1≤0對任意實數x∈(1,m]都成立,即(1,m]是不等式x2+(2-k)x+1≤0解集的一個子集,設不等式x2+(2-k)x+1≤0解集為a≤x≤b,則a≤1,b≥m,進而根據使f(x)≤kx對任意實數x∈(1,m]都成立的m的最大值是5,構造關于k的方程,解方程即可得到答案.
解答:設g(x)=x2+(2-k)x+1
設不等式g(x)≤0的解集為a≤x≤b.
則△=(2-k)2-4>=0,解得k≥4或k≤0
又∵函數f(x)=x2+2x+1,且f(x)<=kx對任意實數x屬于(1,m]恒成立;
∴(1,m]⊆[a,b]
∴a≤1,b≥m
∴f(1)=4-k<0,解得k>4
m的最大值為b,所以有b=5.
即x=5是方程g(x)=0的一個根,代入x=5我們可以解得k=
故答案為:
點評:本題考查的知識點是二次函數在閉區(qū)間上的最值,二次函數的性質,其中將已知條件轉化為(1,m]是不等式x2+(2-k)x+1≤0解集的一個子集,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案