20.若△ABC中,AC=$\sqrt{3}$,A=45°,C=75°,則BC=$\sqrt{2}$.

分析 由已知利用三角形內(nèi)角和定理可求B,進(jìn)而利用正弦定理即可解得BC的值.

解答 解:∵AC=$\sqrt{3}$,A=45°,C=75°,B=180°-A-C=60°,
∴由正弦定理$\frac{AC}{sinB}=\frac{BC}{sinA}$,可得:BC=$\frac{AC•sinA}{sinB}$=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查了三角形內(nèi)角和定理,正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1,
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+$\frac{π}{6}$)+1>6cos4x對(duì)任意x∈(-$\frac{π}{4}$,$\frac{π}{4}$)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=sin(x+θ)是奇函數(shù),則滿足條件的所有θ組成的集合為{θ|θ=kπ,k∈Z}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2+log3x,x∈[1,9].
(1)求f(x)的值域;
(2)求函數(shù)y=f(x2)+[f(x)]2的定義域及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}|x|,x≤1\\{x^2}-2mx+4m,x>1\end{array}$,若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b有三個(gè)不同的根,則m的取值范圍是( 。
A.RB.(-∞,0)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若長(zhǎng)方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長(zhǎng)分別為3,4,5,則該長(zhǎng)方體的外接球表面積為( 。
A.50πB.100πC.150πD.200π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線l經(jīng)過(guò)點(diǎn)A(-2,0)與點(diǎn)B(-5,3),則該直線的傾斜角為(  )
A.150°B.135°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)與y軸的交點(diǎn)為(0,1),且圖象上兩對(duì)稱軸之間的最小距離為$\frac{π}{2}$,則使f(x+t)-f(-x+t)=0成立的|t|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知${a_1}+2{a_2}+3{a_3}+…+n{a_n}=(n-1){S_n}+2n(n∈{N^*})$.
(1)求證:數(shù)列{Sn+2}是等比數(shù)列;
(2)設(shè)${b_n}=\frac{8n-14}{{{S_n}+2}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案