已知數(shù)列{an}中,前n項(xiàng)和為Sn,對于任意n≥1時(shí),3Sn=an+4
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=2Sn,求數(shù)列{bn}的前n項(xiàng)和Tn.
解:(1)數(shù)列{a
n}中,前n項(xiàng)和為S
n,對于任意n≥1時(shí),3S
n=a
n+4,故當(dāng)n≥2時(shí),3s
n-1=a
n-1+4,
相減可得3a
n=a
n-a
n-1,化簡可得 a
n=-
a
n-1,故數(shù)列{a
n}是以-
為公比的等比數(shù)列.
在3S
n=a
n+4中,令n=1可得 a
1=2,
∴a
n=2q
n-1=(-1)
n-1 2
2-n.
(2)若數(shù)列{b
n}滿足b
n=2S
n =2×
=
[1-
]
則當(dāng)n為偶數(shù)時(shí),數(shù)列{b
n}的前n項(xiàng)和T
n =
n+[1+
]+[1-
]+[1+
]+[1-
]…=
n+
+
=
.
則當(dāng)n為奇數(shù)時(shí),數(shù)列{b
n}的前n項(xiàng)和T
n =
+[1+
]+[1-
]+[1+
]+[1-
]…=
n+
+
=
-
.
分析:(1)數(shù)列{a
n}中,對于任意n≥1時(shí),3S
n=a
n+4,故當(dāng)n≥2時(shí),3s
n-1=a
n-1+4,相減并化簡可得a
n=-
a
n-1,故數(shù)列{a
n}是以-
為公比的等比數(shù)列,由此求得數(shù)列{a
n}的通項(xiàng)公式.
(2)若數(shù)列{b
n}滿足b
n=2S
n =
[1-
],分n為偶數(shù)和n為奇數(shù)兩種情況分別求出數(shù)列{b
n}的前n項(xiàng)和T
n 的值.
點(diǎn)評:本題主要考查等比數(shù)列的定義和性質(zhì),等比數(shù)列的通項(xiàng)公式,等比數(shù)列的前n項(xiàng)和公式的應(yīng)用,數(shù)列的前n項(xiàng)的和與第n項(xiàng)的關(guān)系,由遞推關(guān)系求通項(xiàng),體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.