【題目】已知橢圓E:的焦點(diǎn)在軸上,A是E的左頂點(diǎn),斜率為k (k > 0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(Ⅰ)當(dāng)t=4,時(shí),求△AMN的面積;
(Ⅱ)當(dāng)時(shí),求k的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題(Ⅰ)先求直線的方程,再求點(diǎn)的縱坐標(biāo),最后求的面積;(Ⅱ)設(shè),寫出A點(diǎn)坐標(biāo),并求直線的方程,將其與橢圓方程組成方程組,消去,用表示,從而表示,同理用表示,再由及t的取值范圍求的取值范圍.
試題解析:(Ⅰ)設(shè),則由題意知,當(dāng)時(shí),的方程為,.
由已知及橢圓的對(duì)稱性知,直線的傾斜角為.因此直線的方程為.
將代入得.解得或,所以.
因此的面積 .
(Ⅱ)由題意,,.
將直線的方程代入得.
由得,故.
由題設(shè),直線的方程為,故同理可得,
由得,即.
當(dāng)時(shí)上式不成立,
因此.等價(jià)于,
即.由此得,或,解得.
因此的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,,均為正的常數(shù))的最小正周期為,當(dāng)時(shí),函數(shù)取得最小值,則下列結(jié)論正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)入12月以來(lái),某地區(qū)為了防止出現(xiàn)重污染天氣,堅(jiān)持保民生、保藍(lán)天,嚴(yán)格落實(shí)機(jī)動(dòng)車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對(duì)“單雙號(hào)限行”的贊同情況,隨機(jī)采訪了220名市民,將他們的意見(jiàn)和是否擁有私家車情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計(jì) | |
沒(méi)有私家車 | 90 | 20 | 110 |
有私家車 | 70 | 40 | 110 |
合計(jì) | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“是否贊同限行與是否擁有私家車”有關(guān);
(2)為了了解限行之后是否對(duì)交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再?gòu)倪@6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少抽到1名“沒(méi)有私家車”人員的概率.
附:.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:
數(shù)據(jù)表明與之間有較強(qiáng)的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);
(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù),.
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大連市某企業(yè)為確定下一年投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中,.
根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
根據(jù)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
已知這種產(chǎn)品的年利潤(rùn)與、的關(guān)系為.根據(jù)的結(jié)果回答下列問(wèn)題:
年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓短軸的兩個(gè)端點(diǎn)與點(diǎn)構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),試問(wèn)在軸上是否存在定點(diǎn),使恒為定值?若存在,求出的坐標(biāo),并求出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com