已知數(shù)列{an}中,a1=3,a10=21,通項(xiàng)an是項(xiàng)數(shù)n的一次函數(shù),
①求{an}的通項(xiàng)公式,并求a2005
②若{bn}是由a2,a4,a6,a8,…,組成,試歸納{bn}的一個(gè)通項(xiàng)公式.
分析:①由題意可設(shè)an=kn+b,然后代入a1=3,a10=21,可求k,b進(jìn)而可求an,a2005
②由題意可求,b1=a2=7,b2=a4=11,b3=a6=15,b4=a8=19,從而可歸納bn
解答:解:①由題意可設(shè)an=kn+b
∵a1=3,a10=21,
k+b=3
10k+b=21
,解可得,k=2,b=1
∴an=2n+3,a2005=4011
②由題意可得,b1=a2=7,b2=a4=11,b3=a6=15,b4=a8=19
猜想bn=4n+3
點(diǎn)評(píng):本題主要考查了數(shù)列的函數(shù)特性,解題的關(guān)鍵是待定系數(shù)法的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案