已知P、Q為拋物線y2=8x與直線2x+y-8=0的兩個(gè)交點(diǎn),O為原點(diǎn),求|tan∠POQ|的值.?

解析:由,得(8-2x)2=8x,?

即x2-10x+16=0.∴x1=2或x2=8.

代入y=8-2x得P(2,4)、Q(8,-8),

k OP=2,k OQ=-1.

∴|tan∠POQ|=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,正確的命題序號(hào)是
(1)(4)
(1)(4)

(1)對(duì)于函數(shù)f(x)=(2x-x2)ex,f(-
2
)
是f(x)的極小值,f(
2
)
是f(x)的極大值;
(2)設(shè)回歸直線方程為y=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),y平均增加2個(gè)單位;
(3)已知平面向量
a
=(1,1),
b
=(1,-1),則向量
1
2
a
-
3
2
b
=(-2,-1);
(4)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過(guò)P、Q分別作拋物線的切線,兩切線交于A,則點(diǎn)A的縱坐標(biāo)為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下列四個(gè)命題中,正確的命題序號(hào)是________
(1)對(duì)于函數(shù)f(x)=(2x-x2)ex,數(shù)學(xué)公式是f(x)的極小值,數(shù)學(xué)公式是f(x)的極大值;
(2)設(shè)回歸直線方程為y=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),y平均增加2個(gè)單位;
(3)已知平面向量數(shù)學(xué)公式=(1,1),數(shù)學(xué)公式=(1,-1),則向量數(shù)學(xué)公式=(-2,-1);
(4)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過(guò)P、Q分別作拋物線的切線,兩切線交于A,則點(diǎn)A的縱坐標(biāo)為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省駐馬店市泌陽(yáng)一中高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

下列四個(gè)命題中,正確的命題序號(hào)是   
(1)對(duì)于函數(shù)f(x)=(2x-x2)ex,是f(x)的極小值,是f(x)的極大值;
(2)設(shè)回歸直線方程為y=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),y平均增加2個(gè)單位;
(3)已知平面向量=(1,1),=(1,-1),則向量=(-2,-1);
(4)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過(guò)P、Q分別作拋物線的切線,兩切線交于A,則點(diǎn)A的縱坐標(biāo)為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P、Q為拋物線y2=8x與直線2x+y-8=0的兩個(gè)交點(diǎn),O為原點(diǎn),求|tan∠POQ|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案