已知在平面直角坐標(biāo)系中,圓C:(x-a)2+(y-b)2=10(a>b>0)在直線x+2y=0上截得的弦長為2
5

(1)求a,b滿足的關(guān)系;
(2)當(dāng)a2+b2取得最小值時,求圓C的方程.
考點:直線與圓相交的性質(zhì)
專題:計算題,直線與圓
分析:(1)求出圓心到直線的距離,利用圓C:(x-a)2+(y-b)2=10(a>b>0)在直線x+2y=0上截得的弦長為2
5
,即可求a,b滿足的關(guān)系;
(2)利用配方法,確定a2+b2最小值,即可求圓C的方程.
解答: 解:(1)圓心到直線的距離為
|a+2b|
5

∵圓C:(x-a)2+(y-b)2=10(a>b>0)在直線x+2y=0上截得的弦長為2
5
,
∴2
5
=2
10-
(a+2b)2
5

∵a>b>0,
∴a+2b=5;
(2)a2+b2=(5-2b)2+b2=5b2-20b+25=5(b-2)2+5,
∴b=2時,a2+b2取得最小值5,此時a=1,
∴圓C的方程為:(x-1)2+(y-2)2=10.
點評:本題考查圓的方程,考查直線與圓的位置關(guān)系,考查配方法的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是校園“十佳歌手”大獎賽上,七位評委為甲、乙兩位選手打出的分數(shù)的莖葉圖.
(1)寫出評委為乙選手打出分數(shù)數(shù)據(jù)的眾數(shù),中位數(shù);
(2)求去掉一個最高分和一個最低分后,兩位選手所剩數(shù)據(jù)的平均數(shù)和方差,根據(jù)結(jié)果比較,哪位選手的數(shù)據(jù)波動。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,對于任意的n∈N+,都有
an+2-an+1
an+1-an
=k(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下面對“等差比數(shù)列”的判斷:
①等差數(shù)列一定是“等差比數(shù)列”;
②等比數(shù)列一定是“等差比數(shù)列”;
③通項公式為an=a•bn+c(a≠0,b≠0,1)的數(shù)列一定是“等差比數(shù)列”.
其中正確的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(tanx)=sin2x,則f(-1)的值是( 。
A、1
B、-1
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

常用邏輯用語“x>2”是“
1
x
1
2
”的
 
(填“必要不充分”、“充分不必要”或“充要”)條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若原點在直線l上的射影為(2,-1),求直線l的方程;
(2)△ABC中,點A(4,-1),AB的中點為M(3,2),重心為P(4,2),求邊BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項均為正數(shù)的等差數(shù)列{an}中,對任意n∈N*都有a1+a2+…+an=
1
2
anan+1
(1)求數(shù)列{an}的通項an;
(2)設(shè)數(shù)列{bn}滿足b1=1,bn+1-bn=2 an,求證:對任意的n∈N*都有bn•bn+2<bn+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC三內(nèi)角A,B,C所對的邊分別為a,b,c,且4sin
C
2
cos(
π
3
-
C
2
)=
3

(1)求內(nèi)角C
(2)若c=
3
,且△ABC的面積為
3
2
,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
π
3
0
(sin x+a)dx=1,則常數(shù)a的值為( 。
A、
1
B、
1
π
C、
3
D、
9

查看答案和解析>>

同步練習(xí)冊答案