已知正三棱柱的側(cè)棱長和底面邊長均為2, N為側(cè)棱上的點(diǎn),若平面與平面所成二面角(銳角)的余弦值為,試確定點(diǎn)N的位置。
點(diǎn)N是線段中點(diǎn)
解:取線段AC中點(diǎn)O,線段中點(diǎn),
連接OB、,由已知得,
,建系如圖。
,,C(-1,0,0),
,,,設(shè)
設(shè)是平面的法向量,
是平面的法向量,
,,可求的,
,,可求的,
已知平面與平面所成二面角(銳角)的余弦值為,
所以,于是,解得:
于是點(diǎn)N是線段中點(diǎn)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐A—BCDE中,底面BCDE為矩形,AB=AC,BC=2,CD=1,并且側(cè)面底面BCDE。
(1)取CD的中點(diǎn)為F,AE的中點(diǎn)為G,證明:FG//面ABC;
(2)試在線段BC上確定點(diǎn)M,使得AEDM,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是矩形,,點(diǎn)的中點(diǎn),點(diǎn)在邊上移動。
1)點(diǎn)的中點(diǎn)時,試判斷與平面的位置關(guān)系,并說明理由。
2)證明:無論點(diǎn)在邊的何處,都有
3)當(dāng)等于何值時,與平面所成角的大小為.(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如右圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,∠PDA=30°,點(diǎn)F是PB的中點(diǎn),
點(diǎn)E在邊BC上,
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)證明:AF⊥平面PBC;
(Ⅲ)當(dāng)BE等于何值時,二面角P—DE—A的大小為45°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在長方體中,的中點(diǎn),的中點(diǎn).
(1)證明:;
(2)求與平面所成角的正弦值.
                                        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)如圖,已知四棱錐
底面為直角梯形,,,,
,M是的中點(diǎn)。
(1)  證明:;
(2)  求異面直線所成的角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為.且點(diǎn)E在平面ABC上的射影落在的平分線上。

(I)求證:DE//平面ABC;
(II)求二面角E—BC—A的余弦;
(III)求多面體ABCDE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
在多面體中,點(diǎn)是矩形的對角線的交點(diǎn),三角形是等邊三角形,棱
(Ⅰ)證明:平面;
(Ⅱ)設(shè),,
與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
在單位正方體中,M,N,P分別是的中點(diǎn),O為底面ABCD的中心.
( 1)求證:OM平面;
(2)平面MNP平面;
(3)求B到平面的距離

查看答案和解析>>

同步練習(xí)冊答案