建造一個(gè)容積為8m3,深為2m的長方形無蓋水池,如果池底和池壁的造價(jià)分別為120元/m2和80元/m2
(1)求總造價(jià)關(guān)于底面一邊長的函數(shù)解析式,并指出函數(shù)的定義域;
(2)求總造價(jià)的最小值.
分析:(1)先設(shè)底邊一邊長為xm,總造價(jià)為y元,由題意,知底面面積為4m2,則底面另一邊長為
4
x
m,從而即可求得總造價(jià)關(guān)于底面一邊長的函數(shù)解析式.
(2)利用函數(shù)的單調(diào)性求函數(shù)f(x)的最小值,分類討論:當(dāng)0<x<2時(shí),利用單調(diào)性的定義證明它是單調(diào)遞減的函數(shù),再證明當(dāng)x>2時(shí),是單調(diào)遞增的函數(shù),從而得出函數(shù)f(x)在(0,+∞)上的最小值即可.
解答:解:(1)設(shè)底邊一邊長為xm,總造價(jià)為y元,則
由題意,知底面面積為4m2,則底面另一邊長為
4
x
m,
y=120×4+80×(4x+4×
4
x
)=480+320(x+
4
x
)
,x∈(0,+∞)
(2)當(dāng)0<x<2時(shí),y=f(x)=480+320(x+
4
x
)
是單調(diào)遞減的函數(shù),證明如下:
設(shè)0<x1<x2<2,則f(x1)-f(x2)=320(x1+
4
x1
)-320(x2+
4
x2
)=320[(x1-x2)+(
4
x1
-
4
x2
)]

=320[(x1-x2)+
4(x2-x1)
x1x2
]=320×
(x1-x2)(x1x2-4)
x1x2

∵0<x1<x2<2∴x1-x2<0,x1x2>0,x1x2-4<0,即f(x1)-f(x2)>0
故當(dāng)0<x<2時(shí),y=f(x)=480+320(x+
4
x
)
是單調(diào)遞減的函數(shù)
同理可證明當(dāng)x>2時(shí),y=f(x)=480+320(x+
4
x
)
是單調(diào)遞增的函數(shù)
∴當(dāng)x=2時(shí),y=f(x)=480+320(x+
4
x
)
在(0,+∞)上取到最小值,
最小值為f(2)=480+320(2+
4
2
)=1760

答:(1)總造價(jià)y元關(guān)于底面一邊長xm的函數(shù)解析式為y=480+320(x+
4
x
)
,此時(shí)此函數(shù)的定義域?yàn)椋?,+∞)(2)總造價(jià)的最小值為1760元.
點(diǎn)評(píng):本小題主要考查函數(shù)模型的選擇與應(yīng)用、函數(shù)單調(diào)性的應(yīng)用、導(dǎo)數(shù)的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

建造一個(gè)容積為8m3,深為2m的長方體無蓋水池,如果池底的造價(jià)為每平方米120元,池壁的造價(jià)為每平方米80元,
(1)設(shè)池底的長為x m,試把水池的總造價(jià)S表示成關(guān)于x的函數(shù);
(2)如何設(shè)計(jì)池底的長和寬,才能使總造價(jià)S最低,求出該最低造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

建造一個(gè)容積為8m3,深為2m的長方體無蓋水池,池底和池壁的造價(jià)每平方米分別為120元和80元,如果水池的總造價(jià)為1 760元,則長方體底面一邊長為
2
2
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校要建造一個(gè)容積為8m3,深為2m的長方體無蓋水池,池底和池壁的造價(jià)每平方米分別為240元和160元,那么水池的最低總造價(jià)為
3520
3520
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

建造一個(gè)容積為8m3,深為2m的長方體元蓋水池,如果池底和池壁的造價(jià)分別為每平方米120元和80元,問水池的長、寬各為多少米時(shí)總造價(jià)最低?最低造價(jià)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案