若目標(biāo)函數(shù)z=ax+by(a>0,b>0)滿足約束條件
2x-y-6≤0
x-y+2≥0
且最大值為40,則
5
a
+
1
b
的最小值為( 。
A、
25
6
B、
9
4
C、1
D、4
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:先根據(jù)條件畫出可行域,設(shè)z=ax+by(a>0,b>0),再利用幾何意義求最值,將最大值轉(zhuǎn)化為y軸上的截距,只需求出直線z=ax+by(a>0,b>0),過(guò)可行域內(nèi)的點(diǎn)(4,6)時(shí)取得最大值,從而得到一個(gè)關(guān)于a,b的等式,最后利用基本不等式求最小值即可.
解答: 解:不等式表示的平面區(qū)域陰影部分,
當(dāng)直線z=ax+by(a>0,b>0)過(guò)直線x-y+2=0與直線2x-y-6=0的交點(diǎn)(8,10)時(shí),
目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大40,
即8a+10b=40,即4a+5b=20,
5
a
+
1
b
=(
5
a
+
1
b
)
4a+5b
20
=
5
4
+(
5b
4a
+
a
5b
)≥
5
4
+1=
9
4

故選B.
點(diǎn)評(píng):本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用、簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.
(1)求a、b的值.
(2)若不等式
g(x)
x
-k≥0在x∈[1,2]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=|x+2|的單調(diào)遞減區(qū)間是( 。
A、(-∞,-2]
B、(-∞,2]
C、(-∞,0]
D、無(wú)減區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是正實(shí)數(shù),A是a,b的等差中項(xiàng),G是a,b等比中項(xiàng),則(  )
A、ab≤AG
B、ab≥AG
C、ab≤|AG|
D、ab>AG

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:
1
x-1
<1,命題q:x2+(a-1)x-a>0,若?p是?q的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記a=log2
5
6
,b=70.3.c=(
1
7
9.1,則a、b、c的大小關(guān)系是( 。
A、a<b<c
B、c<b<a
C、a<c<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖三棱錐A-BCD,在棱AC上有一點(diǎn)F.
(1)過(guò)該點(diǎn)作一截面與兩棱AB,CD平行;  
(2)求證:該截面為平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位職工的工資經(jīng)過(guò)5年翻了一番(即原來(lái)的2倍),求每一年比上一年平均增長(zhǎng)的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是△ABC的內(nèi)心(三個(gè)內(nèi)角平分線交點(diǎn))、外心(三條邊的中垂線交點(diǎn))、重心(三條中線交點(diǎn))、垂心(三個(gè)高的交點(diǎn))之一,且滿足2
AP
BC
=
AC
2
-
AB
2

,則點(diǎn)P一定是△ABC的(  )
A、內(nèi)心B、外心C、重心D、垂心

查看答案和解析>>

同步練習(xí)冊(cè)答案