【題目】把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件甲分得紅牌乙分得紅牌(  )

A. 對(duì)立事件 B. 互斥但不對(duì)立事件

C. 不可能事件 D. 必然事件

【答案】B

【解析】根據(jù)題意,把黑、紅、白3張紙牌分給甲、乙、丙三人,事件“甲分得紅牌”與“乙分得紅牌”不會(huì)同時(shí)發(fā)生,故兩者是互斥事件,但除了“甲分得紅牌”與“乙分得紅牌”之外,還有“丙分得紅牌”,故兩者不是對(duì)立事件,所以事件“甲分得紅牌”與“乙分得紅牌”是互斥但不對(duì)立事件.故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】育才高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)“茶藝”、“模擬駕駛”、“機(jī)器人制作”、“數(shù)學(xué)與生活”和“生物與環(huán)境”選修課,每位有興趣的同學(xué)可以在任何一天參加任何一門科目.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座統(tǒng)計(jì)數(shù)據(jù)表明,各選修課各天的滿座的概率如下表:

生物與環(huán)境

數(shù)學(xué)與生活

機(jī)器人制作

模擬駕駛

茶藝

周一

周三

周五

1求茶藝選修課在周一、周三、周五都不滿座的概率;

2設(shè)周三各選修課中滿座的科目數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.

(1)AB,(RA)∩B

(2)AC,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(11)上的奇函數(shù)fx),在x1,0)時(shí),fx=2x+2x

(1)求fx)在(11)上的表達(dá)式;

(2)用定義證明fx)在(1,0)上是減函數(shù);

3)若對(duì)于x0,1)上的每一個(gè)值,不等式m2xfx)<4x1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016~2017安徽蚌埠高二期中)三條兩兩平行的直線可以確定平面的個(gè)數(shù)為

(  )

A. 0 B. 1

C. 0或1 D. 1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用隨機(jī)模擬方法求得某幾何概型的概率為m,其實(shí)際概率的大小為n,(  )

A. m>n B. m<n

C. m=n D. mn的近似值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)關(guān)于圓錐曲線的命題中

設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),,則動(dòng)點(diǎn)的軌跡為雙曲線;

方程的兩根可分別作為橢圓和雙曲線的離心率;

設(shè)定圓上一定點(diǎn)作圓的動(dòng)點(diǎn)弦,為坐標(biāo)原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;

過點(diǎn)作直線,使它與拋物線僅有一個(gè)公共點(diǎn),這樣的直線有3條;

其中真命題的序號(hào)為_________________.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實(shí)數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個(gè)不同的極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是( )

A. 空間中不同三點(diǎn)確定一個(gè)平面

B. 空間中兩兩相交的三條直線確定一個(gè)平面

C. 一條直線和一個(gè)點(diǎn)能確定一個(gè)平面

D. 梯形一定是平面圖形

查看答案和解析>>

同步練習(xí)冊(cè)答案