分析 (1)設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,則c=1.由$\overrightarrow{AF}•\overrightarrow{FB}=1$,即(a+c)•(a-c)=1=a2-c2,可得a2,b2=a2-c2,即可得出.
(2)假設(shè)存在直線l交橢圓于P,Q兩點(diǎn),且F恰為△PQM的垂心,設(shè)P(x1,y1),Q(x2,y2),kPQ=1.可設(shè)直線l的方程為y=x+m.與橢圓方程聯(lián)立得3x2+4mx+2m2-2=0.又F為△PQM的垂心,可得MP⊥FQ.∴$\overrightarrow{MP}•\overrightarrow{FQ}$=0,利用根與系數(shù)的關(guān)系即可得出.
解答 解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,則c=1.
又∵$\overrightarrow{AF}•\overrightarrow{FB}=1$,即(a+c)•(a-c)=1=a2-c2,
∴a2=2,b2=1.
故橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{2}+{y^2}=1$.
(2)假設(shè)存在直線l交橢圓于P,Q兩點(diǎn),且F恰為△PQM的垂心,
設(shè)P(x1,y1),Q(x2,y2),
∵M(jìn)(0,1),F(xiàn)(1,0),∴kPQ=1.
∴設(shè)直線l的方程為y=x+m.
由$\left\{{\begin{array}{l}{y=x+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$,得3x2+4mx+2m2-2=0.
又F為△PQM的垂心,∴MP⊥FQ.
∴$\overrightarrow{MP}•\overrightarrow{FQ}={x_1}({x_2}-1)+{y_2}({y_1}-1)=0$.
又yi=xi+m(i=1,2),
∴x1(x2-1)+(x2+m)(x1+m-1)=0,
即$2{x_1}{x_2}+({x_1}+{x_2})(m-1)+{m^2}-m=0$.
由根與系數(shù)的關(guān)系,得$2•\frac{{2{m^2}-2}}{3}-\frac{4m}{3}(m-1)+{m^2}-m=0$.
解得$m=-\frac{4}{3}$或m=1(舍去),經(jīng)檢驗(yàn)$m=-\frac{4}{3}$符合條件.
故存在直線l,使點(diǎn)F恰為△PQM的垂心,且直線l的方程為$y=x-\frac{4}{3}$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為一元二次方程的根與系數(shù)的關(guān)系、向量垂直與數(shù)量積的關(guān)系、三角形垂心的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (0,1) | C. | (1,1) | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | 12 | D. | -12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
高血壓 | 非高血壓 | 總計(jì) | |
年齡20到39歲 | 12 | c | 100 |
年齡40到60歲 | b | 52 | 100 |
總計(jì) | 60 | a | 200 |
P(k2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{7}{8}$ | B. | $\frac{7}{8}$ | C. | $\frac{7}{8}$或$-\frac{7}{8}$ | D. | $\frac{{\sqrt{15}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com