(本題滿分12分)
如圖,橢圓長軸端點為
,
為橢圓中心,
為橢圓的右焦點,
且
,
.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為
,直線
交橢圓于
兩點,問:是否存在直線
,使點
恰為
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
(1)
; (2)3x-3y-4=0
試題分析:(1)設橢圓方程為
,則
又∵
即
,∴
故橢圓方程為
(2)假設存在直線
交橢圓于
兩點,且
恰為
的垂心,則
設
,∵
,故
,
于是設直線
為
,由
得
∵
又
得
即
由韋達定理得
解得
或
(舍) 經(jīng)檢驗
符合條件
點評:橢圓的概念和性質(zhì),仍將是今后命題的熱點,利用直線、弦長、圓錐曲線三者的關系組成的各類試題是解析幾何中長盛不衰的主題,其中求解與相交弦有關的綜合題仍是今后命題的重點;與其它知識的交匯(如向量、不等式)命題將是今后高考命題的一個新的重點、熱點
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標系
中,橢圓
的焦距為2,且過點
.
求橢圓
的方程;
若點
,
分別是橢圓
的左、右頂點,直線
經(jīng)過點
且垂直于
軸,點
是橢圓上異于
,
的任意一點,直線
交
于點
(ⅰ)設直線
的斜率為
直線
的斜率為
,求證:
為定值;
(ⅱ)設過點
垂直于
的直線為
.求證:直線
過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知橢圓
的左焦點
的坐標為
,
是它的右焦點,點
是橢圓
上一點,
的周長等于
.
(1)求橢圓
的方程;
(2)過定點
作直線
與橢圓
交于不同的兩點
,且
(其中
為坐標原點),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線
稱為橢圓
的“特征直線”,若橢圓的離心率
.(1)求橢圓的“特征直線”方程;
(2)過橢圓
C上一點
作圓
的切線,切點為
P、
Q,直線
PQ與橢圓的“特征直線”相交于點
E、
F,
O為坐標原點,若
取值范圍恰為
,求橢圓
C的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若直線y=x+k與曲線x=
恰有一個公共點,則k的取值范圍是___________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系中,
的兩個頂點
、
的坐標分別是(-1,0),(1,0),點
是
的重心,
軸上一點
滿足
,且
.
(1)求
的頂點
的軌跡
的方程;
(2)不過點
的直線
與軌跡
交于不同的兩點
、
,當
時,求
與
的關系,并證明直線
過定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
與雙曲線
有相同的焦點
和
,若
是
的等比中項,
是
與
的等差中項,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)設橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過雙曲線
的左焦點
作斜率為1的直線,該直線與雙曲線的兩條漸近線的交點分別為A、B,若
,則雙曲線的漸近線方程為( )
A.
B.
C.
D.
查看答案和解析>>