【題目】設(shè)數(shù)列的前項(xiàng)和為,若,則稱數(shù)列”.

1)若數(shù)列,且,求的取值范圍;

2)若是等差數(shù)列,首項(xiàng)為,公差為,且,判斷是否為數(shù)列

3)設(shè)數(shù)列是等比數(shù)列,公比為,若數(shù)列都是數(shù)列,求的取值范圍.

【答案】1 2)見(jiàn)解析; 3.

【解析】

1)根據(jù)數(shù)列的新定義,列出不等式組,,即可求解;

2)由等差數(shù)列,得到,進(jìn)而得出,再由的單調(diào)性,得到,即可得到結(jié)論;

3)設(shè)等比數(shù)列的公比為,分時(shí),結(jié)合數(shù)列的新定義,即可作差判定.

1)由題意,數(shù)列滿足,稱數(shù)列,

又由,,,可得

解得,即的取值范圍是.

2)由題意,數(shù)列的通項(xiàng)公式為

,

又由,可得數(shù)列隨著的增大而減小,

所以當(dāng)時(shí),取得最大值,所以,

所以數(shù)列數(shù)列”.

3)由題意得,等比數(shù)列的公比為,

由數(shù)列是“G的數(shù)列”,可得,即,

①當(dāng)時(shí),所以,則,符合題意,

②當(dāng)時(shí),則,則,

因?yàn)閿?shù)列是“G的數(shù)列”,所以對(duì)恒成立,

i)當(dāng)時(shí),,

對(duì)恒成立,

因?yàn)?/span>,

所以

所以當(dāng)時(shí),對(duì)恒成立;

ii)當(dāng)時(shí),,

對(duì)恒成立,

因?yàn)?/span>,

所以,解得,

,所以不存在滿足題意,

綜上可得,數(shù)列的公比的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個(gè)實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).

1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說(shuō)明理由:

2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).

3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國(guó)隊(duì)與韓國(guó)隊(duì)相遇,中國(guó)隊(duì)男子選手AB,C,D,E依次出場(chǎng)比賽,在以往對(duì)戰(zhàn)韓國(guó)選手的比賽中他們五人獲勝的概率分別是0.80.8,0.80.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用53勝制,先贏3局者獲得勝利.

1)在決賽中,中國(guó)隊(duì)以31獲勝的概率是多少?

2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線方程為,過(guò)其右焦點(diǎn)且斜率不為零的直線與雙曲線交于A,B兩點(diǎn),直線的方程為,A,B在直線上的射影分別為C,D.

1)當(dāng)垂直于x軸,時(shí),求四邊形的面積;

2,的斜率為正實(shí)數(shù),A在第一象限,B在第四象限,試比較1的大小;

3)是否存在實(shí)數(shù),使得對(duì)滿足題意的任意,直線和直線的交點(diǎn)總在軸上,若存在,求出所有的值和此時(shí)直線交點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.

(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫(xiě)出算式即可,不必計(jì)算出結(jié)果)

(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(jī)(單位:分)對(duì)應(yīng)如下表:

學(xué)生序號(hào)

1

2

3

4

5

6

7

數(shù)學(xué)成績(jī)

60

65

70

75

85

87

90

物理成績(jī)

70

77

80

85

90

86

93

①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績(jī)均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;

②根據(jù)上表數(shù)據(jù),求物理成績(jī)關(guān)于數(shù)學(xué)成績(jī)的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績(jī)?yōu)?6分,預(yù)測(cè)該同學(xué)的物理成績(jī)?yōu)槎嗌俜郑?/span>

附:線性回歸方程,

其中,.

76

83

812

526

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上分別為左、右焦點(diǎn),橢圓的一個(gè)頂點(diǎn)與兩焦點(diǎn)構(gòu)成等邊三角形,且

1)求橢圓方程;

2)對(duì)于x軸上的某一點(diǎn)T,過(guò)T作不與坐標(biāo)軸平行的直線L交橢圓于兩點(diǎn),若存在x軸上的點(diǎn)S,使得對(duì)符合條件的L恒有成立,我們稱ST的一個(gè)配對(duì)點(diǎn),當(dāng)T為左焦點(diǎn)時(shí),求T的配對(duì)點(diǎn)的坐標(biāo);

3)在(2)條件下討論當(dāng)T在何處時(shí),存在有配對(duì)點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義符號(hào)函數(shù),已知,.

1)求關(guān)于的表達(dá)式,并求的最小值.

2)當(dāng)時(shí),函數(shù)上有唯一零點(diǎn),求的取值范圍.

3)已知存在,使得對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù).

1)討論上的奇偶性;(只要寫(xiě)出結(jié)論,不需要證明)

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面為菱形,且側(cè)棱 其中交點(diǎn).

1)求點(diǎn)到平面的距離;

2)在線段上,是否存在一個(gè)點(diǎn),使得直線垂直?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案