10.已知f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值,并證明f(x)>g(x)+$\frac{1}{2}$恒成立;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為3?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出f(x)的極小值,令h(x)=g(x)+$\frac{1}{2}$=$\frac{lnx}{x}$+$\frac{1}{2}$,求出h(x)的最大值,從而證出結(jié)論即可;
(2)求出函數(shù)f(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)f(x)的最小值,求出a的值即可.

解答 解:(1)證明:∵f(x)=x-lnx,f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
∴當(dāng)0<x<1時(shí),f′(x)<0,此時(shí)f(x)遞減,
當(dāng)1<x<e時(shí),f′(x)>0,此時(shí),f(x)遞增,
∴f(x)的極小值是f(1)=1,
即f(x)在(0,e]上的最小值是1,
令h(x)=g(x)+$\frac{1}{2}$=$\frac{lnx}{x}$+$\frac{1}{2}$,h′(x)=$\frac{1-lnx}{{x}^{2}}$,
當(dāng)0<x<e時(shí),h′(x)>0,h(x)在(0,e]上遞增,
∴h(x)max=h(e)=$\frac{1}{e}$+$\frac{1}{2}$<1=f(x)min,
∴f(x)>g(x)+$\frac{1}{2}$恒成立,
(2)解:假設(shè)存在實(shí)數(shù)a,使得f(x)=ax-lnx,(x∈(0,e])有最小值3,
f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
①a≤0時(shí),f(x)在(0,e]遞減,f(x)min=f(e)=ae-1=3,解得:a=$\frac{4}{e}$,
∴a≤0時(shí),不存在a使得f(x)的最小值是3;
②0<$\frac{1}{a}$<e時(shí),f(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,e]遞增,
∴f(x)min=f($\frac{1}{a}$)=1+lna=3,a=e2,滿足條件;
③$\frac{1}{a}$≥e時(shí),f(x)在(0,e]遞減,f(x)min=f(e)=ae-1=3,a=$\frac{4}{e}$(舍),
∴$\frac{1}{a}$≥e時(shí),不存在a使得f(x)的最小值是3;
綜上,存在實(shí)數(shù)a=e2,使得當(dāng)x∈(0,e]時(shí),f(x)有最小值3.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想、轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.?dāng)?shù)列{an}是公差為正數(shù)的等差數(shù)列,a2和 a5是方程x2-12x+27=0 的兩實(shí)數(shù)根,數(shù)列{bn}滿足3n-1bn=nan+1-(n-1)an
(Ⅰ)求an與bn;
(Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn,并求Tn<7 時(shí)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中的假命題是( 。
A.?x0∈(0,+∞),x0<sinx0B.?x∈(-∞,0),ex>x+1
C.?x>0,5x>3xD.?x0∈R,lnx0<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.cos2165°-sin215°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知定義域?yàn)镽的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),且f(1)=2,則不等式f(log2x)>2的解集為( 。
A.(2,+∞)B.$(0,\frac{1}{2})∪(2,+∞)$C.$(0,\frac{{\sqrt{2}}}{2})∪(\sqrt{2},+∞)$D.$(\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知cos2(α+$\frac{π}{4}$)=$\frac{1}{3}$,則sin2α=( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合$A=\left\{{x|\frac{x+1}{x-2}<0}\right\}$,B={x|1<x≤2},則A∩B=( 。
A.(1,2)B.(1,2]C.[-1,2]D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a2=3a4-6,則S9等于( 。
A.54B.50C.27D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若集合A={x|x>0},B={x|y=ln(x-1)},則A∩B等于( 。
A.(1,+∞)B.(0,1)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案