【題目】已知向量 =(ex , lnx+k), =(1,f(x)), (k為常數(shù),e是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=﹣x2+2ax(a為正實(shí)數(shù)),若對(duì)任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由已知可得:f(x)=

,

由已知,

∴k=1

∴F(x)=xexf'(x)= ,

所以F'(x)=﹣lnx﹣2

,

∴F(x)的增區(qū)間為 ,減區(qū)間為


(2)解:∵對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),

∴g(x)max<F(x)max…(6分)

由(I)知,當(dāng) 時(shí),F(xiàn)(x)取得最大值

對(duì)于g(x)=﹣x2+2ax,其對(duì)稱軸為x=a

當(dāng)0<a≤1時(shí), ,

,從而0<a≤1

當(dāng)a>1時(shí),g(x)max=g(1)=2a﹣1,

,從而

綜上可知:


【解析】(1)利用向量平行的條件求出函數(shù)y=f(x),再求出此函數(shù)的導(dǎo)函數(shù),函數(shù)在點(diǎn)(1,f(1))處的切線與x軸平行,說(shuō)明f′(1)=0,則k值可求;從而得出F(x)的解析式,求出函數(shù)F(x)的定義域,然后讓導(dǎo)函數(shù)等于0求出極值點(diǎn),借助于導(dǎo)函數(shù)在各區(qū)間內(nèi)的符號(hào)求函數(shù)F(x)的單調(diào)區(qū)間.(2)對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),等價(jià)于g(x)max<F(x)max , 再求得F(x)取得最大值;利用二次函數(shù)的圖象,對(duì)a進(jìn)行分類(lèi)討論,得出g(x)在[0,1]上的最大值,由g(x)在[0,1]上的最大值小于F(x)max得a的范圍,結(jié)合分類(lèi)時(shí)a的范圍得a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,各側(cè)面是全等的等腰三角形,腰長(zhǎng)為4且頂角為30°,底面是正方形(如圖),在棱PB,PC上各有一點(diǎn)M,N,且四邊形AMND的周長(zhǎng)最小,點(diǎn)S從A出發(fā)依次沿四邊形AM,MN,ND運(yùn)動(dòng)至點(diǎn)D,記點(diǎn)S行進(jìn)的路程為x,棱錐S﹣ABCD的體積為V(x),則函數(shù)V(x)的圖象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(π﹣2x),g(x)=2cos2x,則下列結(jié)論正確的是(
A.函數(shù)f(x)在區(qū)間[ ]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x= 對(duì)稱
D.將函數(shù)f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)透明密閉的正方體容器中,恰好盛有該容器一半容積的水,任意轉(zhuǎn)動(dòng)這個(gè)正方體,則水面在容器中的形狀可以是:
①三角形;②矩形;③正方形;④正六邊形.
其中正確的結(jié)論是(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在正實(shí)數(shù),使得對(duì)任意,都有,且恒成立,則稱函數(shù)上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時(shí), ,若上的“2017的型增函數(shù)”,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點(diǎn),PA⊥平面ABC,E是PC的中點(diǎn), ,PA=AC=1.

(1)求證:AE⊥PB;
(2)求二面角A﹣PB﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為( , ),由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)( π,0),φ∈(﹣ ).
(1)求這條曲線的函數(shù)解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=4an﹣3(n∈N*).
(Ⅰ)證明:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F(xiàn)分別是CC1 , BC的中點(diǎn).
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案