在數(shù)列{an}中,a1=1,an+1=  (n∈N*).
(Ⅰ)求a2, a3,  a4;
(Ⅱ)猜想an,并用數(shù)學(xué)歸納法證明;
(Ⅲ)若數(shù)列bn= ,求數(shù)列{bn}的前n項(xiàng)和sn。

(Ⅰ)∴a2=  = ,a3 =  = ,a4 ==.(Ⅱ)略
(Ⅲ)sn=b1+b2+…+bn=2[(1-)+(-)+…+(-)]=2[1-]=

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列首項(xiàng),公差為,且數(shù)列是公比為4的等比數(shù)列,
(1)求
(2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(3)求數(shù)列的前項(xiàng)和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且, ,
(Ⅰ)求,的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知點(diǎn)是區(qū)域,()內(nèi)的點(diǎn),目標(biāo)函數(shù),的最大值記作.若數(shù)列的前項(xiàng)和為,,且點(diǎn)()在直線上.
(Ⅰ)證明:數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且,中的任何兩個(gè)數(shù)不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足:,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次方程,有兩根,且滿足, 
(1)試用表示;           (2)證明是等比數(shù)列;
(3)設(shè),,的前n項(xiàng)和,證明,()。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知數(shù)列的通項(xiàng)是,則數(shù)列中的正整數(shù)項(xiàng)有(    )項(xiàng).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知f (x)=mx(m為常數(shù),m>0且m≠1).設(shè)f (a1),f (a2),,f (an),(n∈N)是首項(xiàng)為m2,公比為m的等比數(shù)列.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bnan f (an),且數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)m=3時(shí),求Sn;
(3)若cnf(an) lg f (an),問(wèn)是否存在m,使得數(shù)列{cn}中每一項(xiàng)恒不小于它后面的項(xiàng)?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知,把數(shù)列的各項(xiàng)排列成如下的三角形狀,

表示第行的第個(gè)數(shù),則=(   )

A. 
B. 
C. 
D. 

查看答案和解析>>

同步練習(xí)冊(cè)答案