(本題滿分12分)定義在R上的單調(diào)函數(shù)f(x)滿足f(3)=log3且對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求證f(x)為奇函數(shù);
(2)若f(k·3)+f(3-9-2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

(1)證明:f(x+y)=f(x)+f(y)(x,y∈R),           、
令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,則有
0=f(x)+f(-x).即f(-x)=-f(x)對(duì)任意x∈R成立,所以f(x)是奇函數(shù).
(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),又由(1)f(x)是奇函數(shù).
f(k·3)<-f(3-9-2)=f(-3+9+2),  k·3<-3+9+2,
3-(1+k)·3+2>0對(duì)任意x∈R成立.
令t=3>0,問(wèn)題等價(jià)于t-(1+k)t+2>0對(duì)任意t>0恒成立.




R恒成立.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆廣東省高考猜押題卷文科數(shù)學(xué)(三)解析版 題型:解答題

(本題滿分12分)
如圖6,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),
是線段軸的交點(diǎn), .

(I)求動(dòng)點(diǎn)的軌跡的方程
(II)設(shè)圓過(guò),且圓心在曲線上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省高三3月月考理科數(shù)學(xué)試卷 題型:解答題

(本題滿分12分) 設(shè)橢圓 C1)的一個(gè)頂點(diǎn)與拋物線 C2 的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2 分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) F2 的直線  與橢圓 C 交于 M,N 兩點(diǎn).

(I)求橢圓C的方程;

(II)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說(shuō)明理由;

(III)若 AB 是橢圓 C 經(jīng)過(guò)原點(diǎn) O 的弦,MN//AB,求證: 為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一上學(xué)期期中試題數(shù)學(xué) 題型:解答題

(本題滿分12分)某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但出廠單價(jià)不能低于51元.

(1)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?

(2)設(shè)一次訂購(gòu)量為個(gè)時(shí),零件的實(shí)際出廠單價(jià)為P元,寫(xiě)出函數(shù)的表達(dá)式;

(3)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè)時(shí),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一上學(xué)期12月月考數(shù)學(xué) 題型:解答題

(本題滿分12分) 設(shè)是定義在上的增函數(shù),令

(1)求證時(shí)定值;

(2)判斷上的單調(diào)性,并證明;

(3)若,求證。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省棗莊市2010屆高三年級(jí)調(diào)研考試數(shù)學(xué)(文科)試題 題型:解答題

(本題滿分12分)

如圖,斜率為1的直線過(guò)拋物線的焦點(diǎn)F,與拋物線交于兩點(diǎn)A,B。

   (1)若|AB|=8,求拋物線的方程;

   (2)設(shè)C為拋物線弧AB上的動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),求的面積S的最大值;

   (3)設(shè)P是拋物線上異于AB的任意一點(diǎn),直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點(diǎn),證明M,N兩點(diǎn)的縱坐標(biāo)之積為定值(僅與p有關(guān))

 

查看答案和解析>>

同步練習(xí)冊(cè)答案