給出下列命題:
(1)存在實數(shù)α,使sinαcosα=1;
(2)存在實數(shù)α,使數(shù)學(xué)公式;
(3)函數(shù)數(shù)學(xué)公式是偶函數(shù);
(4)方程數(shù)學(xué)公式是函數(shù)數(shù)學(xué)公式圖象的一條對稱軸方程;
(5)若α,β是第一象限角,且α>β,則tanα>tanβ.
(6)把函數(shù)數(shù)學(xué)公式的圖象向右平移數(shù)學(xué)公式個單位,所得的函數(shù)解析式為數(shù)學(xué)公式
其中正確命題的序號是 ________.(注:把你認為正確的命題的序號都填上)

解(1)sinαcosα=1?sin2α=1?sin2α=2>1故(1)錯誤
(2)sinα+cosα=??sin>1故(2)錯誤
(3)是偶函數(shù),故(3)正確
(4)y=cos(x-)的對稱軸是x-=kπ?x=+kπ(,k∈Z)故(4)正確
(5)例如:β=,而tanα=tanβ故(5)錯誤
(6)把函數(shù)的圖象向右平移個單位,所得的函數(shù)解析式為y=cos[2(x-)+]即為,故(6)正確
故答案為:(3)(4)(6)
分析:(1)利用二倍角公式可得sin2α=2>1,(2)利用兩角和的正弦公式可得,(3)先利用誘導(dǎo)公式化簡,然后根據(jù)偶函數(shù)的定義判斷(4)求出函數(shù)的對稱軸,把代入檢驗(5)舉反例(6)根據(jù)函數(shù)的平移法則左加右減可得.
點評:本題綜合考查了三角函數(shù)的二倍角公式,兩角和的正弦公式,正弦函數(shù)的值域-1≤sinx≤1,正余弦函數(shù)的對稱性,函數(shù)平移法則.解決本題的關(guān)鍵是熟練的掌握三角函數(shù)的相關(guān)性質(zhì),靈活運用性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)已知可導(dǎo)函數(shù)f(x),x∈D,則函數(shù)f(x)在點x0處取得極值的充分不必要條件是f′(x0)=0,x0∈D.
(2)已知命題P:?x∈R,sinx≤1,則¬p:?x∈R,sinx>1.
(3)已知命題p:
1
x 2-3x+2
>0
,則¬p:
1
x 2-3x+2
≤0

(4)給定兩個命題P:對任意實數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2-x+a=0有實數(shù)根.如果P∧Q為假命題,P∨Q為真命題,則實數(shù)a的取值范圍是(-∞,0)∪(
1
4
,4)

其中所有真命題的編號是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•萬州區(qū)一模)已知函數(shù)f(x)=|x2-2ax+b|(x∈R),給出下列命題:
(1)f(x)不可能是偶函數(shù);
(2)當(dāng)f(0)=f(2)時,f(x)的圖象必關(guān)于直線x=1對稱;
(3)若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);
(4)f(x)有最小值b-a2
其中正確的命題的序號是
(3)
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①y=1是冪函數(shù);②函數(shù)y=|x+2|-2x在R上有3個零點;③
x-1
(x-2)≥0
的解集為[2,+∞);④當(dāng)n≤0時,冪函數(shù)y=xn的圖象與兩坐標(biāo)軸不相交;其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班級有男生20人,女生30人,從中抽取10個人的樣本,恰好抽到了4個男生、6個女生.給出下列命題:
(1)該抽樣可能是簡單的隨機抽樣;
(2)該抽樣一定不是系統(tǒng)抽樣;
(3)該抽樣女生被抽到的概率大于男生被抽到的概率.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,a3,a4是等差數(shù)列,且滿足1<a1<3,a3=4,若bn=2an,給出下列命題:(1)b1,b2,b3,b4是一個等比數(shù)列; (2)b1<b2; (3)b2>4; (4)b4>32; (5)b2b4=256.其中真命題的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案