【題目】下列敘述正確的是( )
A.命題“p且q”為真,則恰有一個(gè)為真命題
B.命題“已知,則“”是“”的充分不必要條件”
C.命題都有,則,使得
D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點(diǎn)
【答案】C
【解析】
由p且q的真值表,可判斷正誤;由充分必要條件的定義和特值法,可判斷正誤;由全稱命題的否定為特稱命題,可判斷正誤;由函數(shù)零點(diǎn)存在定理可判斷正誤.
解:對于A,命題“P且q為真,則P,q均為真命題”,故錯(cuò)誤;
對于B,“a>b”推不出“a2>b2”,比如a=1,b=﹣1;反之也推不出,比如a=﹣2,b=0,“a>b”是“a2>b2”的不充分不必要條件,故錯(cuò)誤;
對于C,命題都有,則,使得,故正確;
對于D,如果函數(shù)y=f(x)在區(qū)間[a,b]上是連續(xù)不斷的一條曲線,
并且有f(a)f(b)<0,由零點(diǎn)存在定理可得函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),故錯(cuò)誤.
其中真命題的個(gè)數(shù)為1,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代計(jì)時(shí)器的發(fā)明時(shí)間不晚于戰(zhàn)國時(shí)代(公元前476年~前222年),其中沙漏就是古代利用機(jī)械原理設(shè)計(jì)的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道流到下部容器,如圖,某沙漏由上、下兩個(gè)圓錐容器組成,圓錐的底面圓的直徑和高均為8 cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長度忽略不計(jì)).若細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆,則此圓錐形沙堆的高為( )
A.2 cmB. cmC. cmD. cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)、的定義域均為,若對任意,且,具有,則稱函數(shù)為上的單調(diào)非減函數(shù),給出以下命題:① 若關(guān)于點(diǎn)和直線()對稱,則為周期函數(shù),且是的一個(gè)周期;② 若是周期函數(shù),且關(guān)于直線對稱,則必關(guān)于無窮多條直線對稱;③ 若是單調(diào)非減函數(shù),且關(guān)于無窮多個(gè)點(diǎn)中心對稱,則的圖象是一條直線;④ 若是單調(diào)非減函數(shù),且關(guān)于無窮多條平行于軸的直線對稱,則是常值函數(shù);以上命題中,所有真命題的序號是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時(shí),若,,總有成立,其中所有正確命題的序號是( )
A.②B.①②C.③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,是正三角形,四邊形為直角梯形,點(diǎn)為中點(diǎn),且,,,,.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記邊長為1的正六邊形的六個(gè)頂點(diǎn)分別為、、、、、,集合,在中任取兩個(gè)元素、,則的概率為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左.右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形的邊長為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是橢圓長軸的左,右端點(diǎn),動點(diǎn)滿足,連結(jié),交橢圓于點(diǎn).證明: 的定值;
(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點(diǎn),的定點(diǎn),使得以為直徑的圓恒過直線,的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,曲線
過點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(1)求
的值;
(2)證明:當(dāng)
時(shí),
;
(3)若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,點(diǎn)關(guān)于直線的對稱點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)如圖,過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn)(點(diǎn)在點(diǎn)的上方),試求面積的最大值;
(3)若直線經(jīng)過點(diǎn),且與橢圓交于兩個(gè)不同的點(diǎn),是否存在直線(其中),使得到直線的距離滿足恒成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com