△ABC中,a,b,c成等比數(shù)列,則cos(A-C)+cosB+cos2B=
1
1
分析:由題意可知,sin2B=sinAsinC,利用三角形的內(nèi)角和,兩角和與差的三角函數(shù)化簡cos(A-C)+cosB+cos2B,然后利用二倍角公式化簡即可.
解答:解:∵a、b、c三邊成等比數(shù)列,
∴b2=ac.
由正弦定理及b2=ac可得:sin2B=sinAsinC,
∴cos(A-C)+cosB+cos2B
=cos(A-C)-cos(A+C)+cos2B
=2sinAsinC+cos2B
=2sin2B+(1-2sin2B)=1.
故答案為:1.
點評:本題考查三角函數(shù)和正弦定理及等比數(shù)列的知識,解題時要注意公式的合理選用.考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是A、B、C的對邊.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角為
π
3
.求角B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c三邊成等差數(shù)列,求證:B≤60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A:B:C=4:2:1,證明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別為角A,B,C的對邊.若a(a+b)=c2-b2,則角C為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•靜安區(qū)一模)在ρABC中,a、b、c 分別為∠A、∠B、∠C的對邊,∠A=60°,b=1,c=4,則
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步練習(xí)冊答案