【題目】已知函數(shù).

(1)若曲線處的切線方程為,求的極值;

(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請說明理由.

【答案】(1),無極小值;(2).

【解析】試題分析:(1)求出函數(shù)的導數(shù),計算,得到關于的方程組,解出即可求得的表達式,從而求出函數(shù)的單調區(qū)間,進而求出函數(shù)的極值即可;

2)求出的導數(shù),通過討論的取值范圍,判斷函數(shù)的單調性,從而確定的范圍即可。

試題解析:(1)依題意, ,

又由切線方程可知, ,斜率,

所以,解得,所以,

所以,

時, 的變化如下:

+

極大值

所以,無極小值.

2)依題意, ,所以,

時, 上恒成立,故無極值;

時,令,得,則,且兩根之積

不妨設,則,即求使的實數(shù)的取值范圍.

由方程組消去參數(shù)后,得

構造函數(shù),則,所以上單調遞增,

,所以解得,即,解得.

①②可得, 的范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列4個命題:

①“若成等比數(shù)列,則”的逆命題;

②“如果,則”的否命題;

③在中,“若”則“”的逆否命題;

④當時,若恒成立,則的取值范圍是.

其中真命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為推行“高效課堂”教學法,某數(shù)學老師分別用傳統(tǒng)教學和“高效課堂”兩種不同的教學方法,在同一年級的甲、乙兩個同層次的班進行教學實驗,為了解教學效果,期末考試后, 分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖(記成績不低于70分者為“成績優(yōu)良”).

(1)分別計算甲、乙兩班20個樣本中,數(shù)學成績前十名的平均分,并大致判斷那種教學方法的教學效果更佳;

(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方法有關”?

附:

獨立性檢驗臨界表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市需對某環(huán)城快速車道進行限速,為了調研該道路車速情況,于某個時段隨機對輛車的速度進行取樣,測量的車速制成如下條形圖:

經計算:樣本的平均值,標準差,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.

(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;

(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;

(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調區(qū)間;

(2)若時, 恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分為14分)已知定義域為R的函數(shù)是奇函數(shù).

1)求ab的值;

2)若對任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人為了響應政府“節(jié)能減排”的號召,決定各購置一輛純電動汽車.經了解目前市場上銷售的主流純電動汽車,按續(xù)駛里程數(shù)(單位:公里)可分為三類車型, , .甲從三類車型中挑選,乙從兩類車型中挑選,甲、乙兩人選擇各類車型的概率如表:

已知甲、乙都選類型的概率為.

(1)求的值;

(2)求甲、乙選擇不同車型的概率;

(3)某市對購買純電動汽車進行補貼,補貼標準如下表:

記甲、乙兩人購車所獲得的財政補貼之和為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如下表:

(1)在高三年級全體學生中隨機抽取一名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;

(2)若從一班至二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案