12.若tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,則tan2β等于( 。
A.$\frac{1}{7}$B.$\frac{4}{3}$C.-$\frac{1}{7}$D.-$\frac{4}{3}$

分析 由條件利用兩角差的正切公式,求得要求式子的值.

解答 解:∵tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,則tan2β=tan[(α+β)-(α-β)]=$\frac{tan(α+β)-tan(α-β)}{1+tan(α+β)tan(α-β)}$=$\frac{\frac{1}{3}-\frac{1}{2}}{1+\frac{1}{3}•\frac{1}{2}}$=-$\frac{1}{7}$,
故選:C.

點(diǎn)評(píng) 本題主要考查兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是(  )
A.在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等
B.為調(diào)查高三年級(jí)的240名學(xué)生完成作業(yè)所需的時(shí)間,由教務(wù)處對(duì)高三年級(jí)的學(xué)生進(jìn)行編號(hào),從001到240抽取學(xué)號(hào)最后一位為3的學(xué)生進(jìn)行調(diào)查,則這種抽樣方法為分層抽樣
C.“x≠1”是“x2-3x+2≠0”的充分不必要條件
D.命題p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定為:“?x∈R,x2-3x+2≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x2+ax,若f(f(x))的最小值與f(x)的最小值相等,則a的取值范圍是{a|a≥2或a≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)直線l與橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$相交于A,B兩點(diǎn),與圓(x-1)2+y2=r2(r>0)相切于點(diǎn)M,且M為線段AB的中點(diǎn),若這樣的直線l恰有4條,則r的取值范圍是( 。
A.(1,$\sqrt{6}$)B.(2,$\sqrt{7}$)C.(2,$\sqrt{6}$)D.(1,$\sqrt{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)$\overrightarrow a=(2,-1),向量\overrightarrow b滿足2\overrightarrow a-\overrightarrow b$=(-1,3),則$\overrightarrow b$等于( 。
A.(-5,5)B.(5,-5)C.(-3,3)D.(3,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=sin(2x+$\frac{π}{12}$)的圖象經(jīng)過(guò)平移后所得圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)中心對(duì)稱(chēng),這個(gè)平移變換可以是( 。
A.向左平移$\frac{π}{8}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{π}{8}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)價(jià)是每件10元,根據(jù)一周的銷(xiāo)售數(shù)據(jù)得出周銷(xiāo)量P(件)與單價(jià)x(元)之間的關(guān)系如圖折線所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.
(I)根據(jù)周銷(xiāo)量圖寫(xiě)出周銷(xiāo)量P(件)與單價(jià)x(元)之間的函數(shù)關(guān)系式;
(Ⅱ)寫(xiě)出周利潤(rùn)y(元)與單價(jià)x(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷(xiāo)售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,P為雙曲線C上一點(diǎn),Q為雙曲線C漸近線上一點(diǎn),P、Q均位于第一象限,且$\overrightarrow{QP}$=$\overrightarrow{P{F}_{2}}$,$\overrightarrow{Q{F}_{1}}$•$\overrightarrow{Q{F}_{2}}$=0,則雙曲線C的離心率為$\sqrt{5}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.$\frac{\sqrt{2}}{3}$πB.2$\sqrt{2}$+2πC.$\frac{2\sqrt{2}}{3}$πD.2$\sqrt{2}$+$\frac{3}{2}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案