【題目】如圖,在四棱錐中, , ∥,且 , , .
(Ⅰ)求證:平面⊥平面;
(Ⅱ)求直線(xiàn)與平面所成角的正弦值.
【答案】(I)證明見(jiàn)解析;(Ⅱ).
【解析】試題分析:(1)證明面面垂直,一般利用面面垂直判定定理,即從線(xiàn)面垂直進(jìn)行論證,而線(xiàn)面垂直證明,往往需要多次利用線(xiàn)線(xiàn)垂直與線(xiàn)面垂直的轉(zhuǎn)化,而線(xiàn)線(xiàn)垂直,有時(shí)可利用平幾條件進(jìn)行尋找與論證,如本題取中點(diǎn)E,利用平幾知識(shí)得到四邊形是矩形,從而得到,而易得,因此,進(jìn)而有平面平面;(2)利用空間向量求線(xiàn)面角,首先建立空間直角坐標(biāo)系:以A 為原點(diǎn), 為軸, 為軸,建立空間直角坐標(biāo)角系,設(shè)出各點(diǎn)坐標(biāo),利用方程組解出面的法向量,利用向量數(shù)量積求夾角,最后根據(jù)線(xiàn)面角與向量夾角互余得結(jié)論
試題解析:解:證明:(1)為中點(diǎn), , ,且四邊形是矩形, ,又平面,且,在平面中, 平面平面,又平面平面,平面平面.
(2)以A 為原點(diǎn), 為軸, 為軸,建立空間直角坐標(biāo)角系,
,
則
設(shè)平面的法向量,則,取,得,
設(shè)直線(xiàn)與平面所成的角為, ,
直線(xiàn)與平面所成的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)C1: ( t 為參數(shù)),曲線(xiàn)C2: (r>0,θ為參數(shù)).
(1)當(dāng)r=1時(shí),求C 1 與C2的交點(diǎn)坐標(biāo);
(2)點(diǎn)P 為曲線(xiàn) C2上一動(dòng)點(diǎn),當(dāng)r=時(shí),求點(diǎn)P 到直線(xiàn)C1距離最大時(shí)點(diǎn)P 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( )
A.y= 與y=x+1
B.y=lgx與y= lgx2
C.y= ﹣1與y=x﹣1
D.y=x與y=logaax(a>0且a≠1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=﹣ .
(1)求曲線(xiàn)C1的普通方程與曲線(xiàn)C2的直角坐標(biāo)方程;
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t= ,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線(xiàn)C3: (α為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 的定義域是一切實(shí)數(shù),則m的取值范圍是( )
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=|ax﹣1﹣1|在區(qū)間(a,3a﹣1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù)中,在(0,+∞)上為增函數(shù)的是( )
A.f(x)=3﹣x
B.f(x)=x2﹣3x
C.f(x)=﹣
D.f(x)=﹣|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿(mǎn)足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱(chēng)區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯(cuò)誤的是( )
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)= (x>0)不存在“和諧區(qū)間”
D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com