6、若直線(xiàn)l:y=kx-1與直線(xiàn)x+y-1=0的交點(diǎn)對(duì)稱(chēng)的直線(xiàn)方程,則實(shí)數(shù)k的取值范圍是( 。
分析:從題目看y=kx-1是過(guò)(0,-1)點(diǎn)的直線(xiàn)系,與直線(xiàn)x+y-1=0的交點(diǎn)對(duì)稱(chēng)的直線(xiàn)方程,只須看直線(xiàn)的斜率即可.
解答:解:直線(xiàn)y=kx-1,恒過(guò)A(0,-1),直線(xiàn)x+y-1=0,與坐標(biāo)軸的交點(diǎn)為B(1,0)和C(0,1),
只須k>kAB即可,又kAB=1所以k>1
故選C
點(diǎn)評(píng):也可以這樣解:交點(diǎn)位于第一象限,就是橫坐標(biāo)和縱坐標(biāo)同時(shí)大于0,進(jìn)而求實(shí)數(shù)k的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)C:x2=2py(p>0)上一點(diǎn)P(m,4)到其焦點(diǎn)的距離為5.
(I)求p與m的值;
(II)若直線(xiàn)l:y=kx-1與拋物線(xiàn)C相交于A、B兩點(diǎn),l1、l2分別是該拋物線(xiàn)在A、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與該拋物線(xiàn)的準(zhǔn)線(xiàn)交點(diǎn),求證:|
AM
+
BN
|>4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C的漸近線(xiàn)為y=±
3
3
x且過(guò)點(diǎn)M(
6
,1).
(1)求雙曲線(xiàn)C的方程;
(2)若直線(xiàn)l:y=kx+m,(m≠0)與雙曲線(xiàn)C相交于A,B兩點(diǎn),D(0,-1)且有|AD|=|BD|,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)l:y=kx-
3
與直線(xiàn)2x+3y-6=0的交點(diǎn)位于第一象限,則直線(xiàn)l的傾斜角的取值范圍是
(
π
6
π
2
)
(
π
6
,
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,P為橢圓C上任意一點(diǎn).已知
PF1
PF2
的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線(xiàn)l:y=kx+m與橢圓C相交于M、N兩點(diǎn)(M、N不是左右頂點(diǎn)),且以MN為直徑的圓過(guò)點(diǎn)A.求證:直線(xiàn)l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案