分析 先求出f(-$\frac{π}{4}$)=-$\sqrt{2}sin(-\frac{π}{4})=1$,從而f(f(-$\frac{π}{4}$))=f(1)=tan$\frac{π}{4}$,由此能求出結果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-\sqrt{2}sinx-1,-1≤x≤0}\\{tan(\frac{π}{4}x),0<x≤1}\end{array}\right.$,
∴f(-$\frac{π}{4}$)=-$\sqrt{2}sin(-\frac{π}{4})=1$,
∴f(f(-$\frac{π}{4}$))=f(1)=tan$\frac{π}{4}$=1.
故答案為:1.
點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
贊成 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
P(K2≥k) | 0.25 | 0.15 | 0.10 |
k | 1.323 | 2.072 | 2.706 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{7π}{6},\frac{4π}{3})$ | B. | [$\frac{7π}{6}$,$\frac{4π}{3}$] | C. | ($\frac{4π}{3}$,$\frac{3π}{2}$) | D. | f(x) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{5}{18}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | -$\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com