已知f(a)=
(1)化簡f(a);
(2)若cos(a)=,且a是第三象限角,求f(a).
【答案】分析:(1)利用誘導公式對函數(shù)解析式化簡整理后,利用同角三角函數(shù)的基本關系約分求得函數(shù)f(a)的解析式.
(2)利用誘導公式求得sinα的值,進而根據(jù)同角三角函數(shù)的基本關系求得cosα,代入(1)中函數(shù)解析式求得答案.
解答:解:(1)f(a)===-cosα
(2)∵cos(a)=,∴sinα=-,
∵a是第三象限角,
∴cosα=-=-,
∴f(a)=-cosα=
點評:本題主要考查了三角函數(shù)的化簡求值,同角三角函數(shù)的基本關系和誘導公式的應用.利用誘導公式的時候要特別留意三角函數(shù)值的正負.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
m
n
,其中向量
m
=(2cosx,1), 
n
=(cosx,
3
sin2x),x∈R

(1)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為
3
2
,求△ABC外接圓半徑R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,   
3
sin2x),x∈R

(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為
3
2
,求
b+c
sinB+sinC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
m
n
,其中
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2,b=1△ABC的面積為
3
2
,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=3sin(ωx+
π
6
)
,ω>0,x∈(-∞,+∞),且以
π
2
為最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=-3,b=1,△ABC的面積為
3
2
  ,求
b+c
sinB+sinC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(2cosx,1)
,向量
n
=(cosx,
3
sin2x)
,函數(shù)f(x)=
m
n
+
2010
1+cot2x
+
2010
1+tan2x

(1)化簡f(x)的解析式,并求函數(shù)的單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2012,b=1,△ABC的面積為
3
2
,求
1005(a+c)
sinA+sinC
的值.

查看答案和解析>>

同步練習冊答案