設(shè)a,b,c為任意三角形三邊長,I=a+b+c,S=ab+bc+ca,試證:I2<4S.

證明略
證明 由I2=(a+b+c)2
=a2+b2+c2+2(ab+bc+ca)
=a2+b2+c2+2S,
∵a,b,c為任意三角形三邊長,
∴a<b+c,b<c+a,c<a+b,
∴a2<a(b+c),b2<b(c+a),c2<c(a+b)
即(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0
∴a2+b2+c2-2(ab+bc+ca)<0
∴a2+b2+c2<2S
∴a2+b2+c2+2S<4S.
∴I2<4S.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列幾個命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點(diǎn)A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為(0,-1);④設(shè)
a
b
,
c
為同一平面內(nèi)具有相同起點(diǎn)的任意三個非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
b
為鄰邊的平行四邊形的面積.其中正確命題的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A′B′C′的正(主)視圖和側(cè)(左)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),射線OA旋轉(zhuǎn)所成的角為x弧度(x可以取到任意一個實數(shù)),對應(yīng)的俯視圖的面積為S(x),則函數(shù)S(x)的最大值為
8
8
;最小正周期為
π
3
π
3

說明:“三棱柱繞直線OO′旋轉(zhuǎn)”包括逆時針方向和順時針方向,逆時針方向旋轉(zhuǎn)時,OA旋轉(zhuǎn)所成的角為正角,順時針方向旋轉(zhuǎn)時,OA旋轉(zhuǎn)所成的角為負(fù)角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A′B′C′的正視圖和側(cè)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O、O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn)(包括逆時針方向和順時針方向),射線OA旋轉(zhuǎn)所成的角為x弧度(x可以取到任意一個實數(shù)),對應(yīng)的俯視圖的面積記為S(x),則函數(shù)S(x)的最大值和最小正周期分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三11月月考理科數(shù)學(xué) 題型:選擇題

函數(shù)f (x)的定義域為D,若對于任意,當(dāng)時,都有,則稱函數(shù)在D上為非減函數(shù) .  設(shè)函數(shù)f (x)在[0,1]上為非減函數(shù),且滿足以下三個條件:

;② ;③,則等(。

A.              B.                 C. 1                 D. 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南衡陽市2010-2011學(xué)年高三第二次月考(數(shù)學(xué)理) 題型:選擇題

函數(shù)f (x)的定義域為D,若對于任意,當(dāng)時,都有,則稱函數(shù)D上為非減函數(shù). 設(shè)函數(shù)f (x)在[0,1]上為非減函數(shù),且滿足以下三個條件:1;  2; 3.

等于(    )

A.                   B.                     C.  1                    D.

 

查看答案和解析>>

同步練習(xí)冊答案