橢圓上任一點P,到兩焦點的距離之積的最大值是________,最小值是________.

答案:25,9
解析:


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1,F(xiàn)2,A為橢圓短軸的一個頂點,且△AF1F2是直角三角形,橢圓上任一點P到左焦點F1的距離的最大值為
2
+1

(1)求橢圓C的方程;
(2)與兩坐標軸都不垂直的直線l:y=kx+m(m>0)交橢圓C于E,F(xiàn)兩點,且以線段EF為直徑的圓恒過坐標原點,當△OEF面積的最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省汕頭市高二(下)質(zhì)量監(jiān)測數(shù)學試卷(文科)(解析版) 題型:解答題

橢圓上任一點P到兩焦點的距離的和為6,離心率為,A、B分別是橢圓的左右頂點.
(1)求橢圓的標準方程;
(2)設C(x,y)(0<x<a)為橢圓上一動點,D為C關于y軸的對稱點,四邊形ABCD的面積為S(x),設f(x)=,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省佛山市普通高中高三質(zhì)量檢測數(shù)學試卷1(文科)(解析版) 題型:解答題

橢圓上任一點P到兩個焦點的距離的和為6,焦距為,A,B分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若P與A,B均不重合,設直線PA與PB的斜率分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)設C(x,y)(0<x<a)為橢圓上一動點,D為C關于y軸的對稱點,四邊形ABCD的面積為S(x),設,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學二輪綜合測試卷3(文科)(解析版) 題型:解答題

橢圓上任一點P到兩個焦點的距離的和為6,焦距為,A,B分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若P與A,B均不重合,設直線PA與PB的斜率分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)設C(x,y)(0<x<a)為橢圓上一動點,D為C關于y軸的對稱點,四邊形ABCD的面積為S(x),設,求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習冊答案