已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(3)若,使成立,求實(shí)數(shù)a的取值范圍.
(1) 單調(diào)減區(qū)間是,增區(qū)間是;(2); (3)

試題分析:(1)對(duì)求導(dǎo)函數(shù)后,解不等式可得單調(diào)區(qū)間;(2)由題知上恒成立,即,可得,所以的取值范圍;(3)原命題等價(jià)于當(dāng)時(shí),有對(duì)進(jìn)行討論,利用函數(shù)單調(diào)性可得的范圍.
解:由已知函數(shù)的定義域均為,且.  1分
(1)函數(shù),
當(dāng)時(shí),;當(dāng)時(shí),
所以函數(shù)的單調(diào)減區(qū)間是,增區(qū)間是.  3分
(2)因f(x)在上為減函數(shù),故上恒成立.
所以當(dāng)時(shí),

故當(dāng),即時(shí),
所以于是,故a的最小值為.  6分
(3)命題“若使成立”等價(jià)于
“當(dāng)時(shí),有”.       
由(Ⅱ),當(dāng)時(shí),,
問(wèn)題等價(jià)于:“當(dāng)時(shí),有”.     8分
當(dāng)時(shí),由(Ⅱ),上為減函數(shù),
=,故.     
當(dāng)時(shí),由于上為增函數(shù),
的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050932857615.png" style="vertical-align:middle;" />,即
(i)若,即,恒成立,故上為增函數(shù),
于是,=,不合題意.        10分
(ii)若,即,由的單調(diào)性和值域知,
唯一,使,且滿足:
當(dāng)時(shí),,為減函數(shù);當(dāng)時(shí),,為增函數(shù);
所以,=,
所以,,與矛盾,不合題意.
綜上,得.                   14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值;
(2)若,求的取值范圍.
(3)證明:  +(n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013•天津)已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的t>0,存在唯一的s,使t=f(s).
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時(shí),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求經(jīng)過(guò)點(diǎn)A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,函數(shù),
(1)若曲線與曲線在它們的交點(diǎn)處的切線互相垂直,求的值;
(2)設(shè),若對(duì)任意的,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,,,當(dāng)時(shí),      ; 當(dāng)時(shí),        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)在x=1處有極小值-1,
(1)試求的值;  (2)求出的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表:
x
-1
0
4
5
f(x)
1
2
2
1
 
f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示:

下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn);
⑤函數(shù)y=f(x)-a的零點(diǎn)個(gè)數(shù)可能為0, 1,2,3,4個(gè).
其中正確命題的序號(hào)是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)函數(shù)在定義域內(nèi)是否存在零點(diǎn)?若存在,請(qǐng)指出有幾個(gè)零點(diǎn);若不存在,請(qǐng)說(shuō)明理由;
(3)若,當(dāng)時(shí),不等式恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案